Question Paper Code:95B03

B.E./B.Tech. DEGREE EXAMINATION, DEC 2021

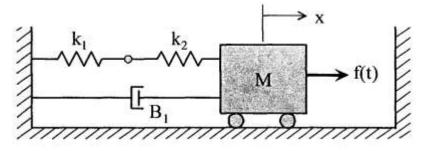
Fifth Semester

Biomedical Engineering

19UBM503 – BIO CONTROL SYSTEM

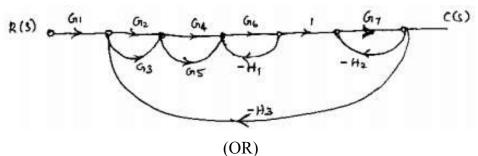
(Regulation 2019)

Duration: Three hours

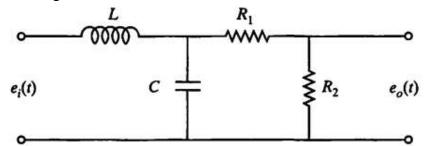

Maximum: 100 Marks

1.	Why negative feedback is invariably preferred in closed loop control system?	CO1 - U
2.	Compare the block diagram representation and signal flow graph.	CO1 - U
3.	What is the difference between steady state response and transient response of a control system?	CO1 - U
4.	Give the effect of addition of poles on the root locus.	CO1-U
5.	A unity feedback system has the transfer function $G(s) = \frac{10}{s(s+6)}$. Determine the	CO2 - U
	resonant peak and resonant frequency.	
6.	How phase margin determined from bode's plot?	CO1-U
7.	What are the advantages of state space representation?	CO1-U
8.	List out the properties of State transition matrix.	CO1-U
9.	Which type of feedback is highly common in physiological systems? Explain with example.	CO1-U

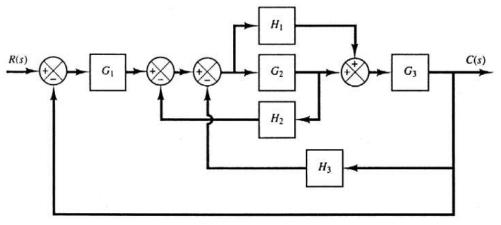
10. Write any four examples of physiological control system. CO1-U


PART - B (5 x 16 = 80 Marks)

11. a) (i) For the mechanical system shown in fig, draw the force voltage and force CO2-Ap (8) current electrical analogous circuits.



(ii) For the given signal flow graph find C(s)/R(s) using Mason's gain CO2-Ap (8)

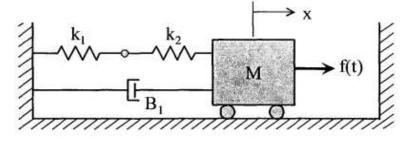

formula.

b) (i) Examine the given electrical network and deduce the transfer function. CO2-Ap (8)

(ii) Draw the signal flow graph and find C(s)/R(s) for the system shown in CO2-Ap (8) fig.

12. a) (i) The open loop transfer function of a unity feedback system is given by CO3-E (8) $G(s) = \frac{1}{s(1+s)}$. Determine the generalized error coefficients and steady

state error of the system for the input $r(t) = 4 + 6t + 2t^3$.


(ii) Using Routh stability criterion method comment on the stability of the CO4-An (8) unity feedback system, whose open-loop transfer function is given by $G(s) = \frac{K}{s(s+5)(s+10)}$ Find the range of K values at which the system is stable.

- b) (i) The closed loop Transfer function of the СО3-Е (8)system is $\frac{25 K}{(s^2 + (5 + 500 K_i)s + 25 K)}$. Find the value of K and K_i so that the maximum overshoot of the output is approximately 25 percent and the rise time is 0.1 sec.
 - (ii) Determine the approximate root locus diagram for a closed loop system CO4-An (8) whose loop transfer function is given by $G(S) H(S) = \frac{K}{s(s+5)(s+10)}$.

13. The open loop transfer function of a unity feedback system is given by СО3-Е (16)a) $G(s) = \frac{K}{s(1+0.5s)(1+0.2s)}$. Using bode plot find the value of K so that (i) The gain margin of the system is 6 db and (ii) The phase margin of the system is 25°.

(OR)

- The open loop transfer function of a unity feedback system is given by CO3-E b) (16) $G(s) = \frac{K}{s(s^2 + s + 4)}$. Using polar plot, determine the value of K so that phase margin is 50°. What is the corresponding gain margin?
- (i) Find the state model of the mechanical system shown below. 14. CO5-Ap (8) a)

(ii) A system is represented by the state equation \dot{X} = AX+BU; Y = CX CO5-Ap (8) where, $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & -10 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$. Determine

the transfer function of the system.

(OR)

- b) (i) Obtain the state model of the system described by the following transfer CO5-Ap (8) function $\frac{Y(s)}{U(s)} = \frac{5}{s^3 + 6s + 7}.$
 - (ii) A Linear Time Invariant system is characterized by the state equation CO5-Ap (8)

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$; where *u* is a unit step function. Compute the solution of this equation assuming initial condition $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Use inverse Laplace transform technique.

- 15. a) (i) Differentiate physiological control system with an engineering control CO1-U (8) system.
 - (ii) With a neat diagram explain the linear model of any one physiological CO1-U (8) system.

(OR)

- b) (i) Analyze the various properties of generalized biological system and CO1-U (8) explain how to create models with combinations of system elements.
 - (ii) Explain with suitable examples the need for modeling in physiological CO1-U (8) system.