C Reg. No. :	
--------------	--

Question Paper Code: 55B04

	B.E	E. / B.Tech. DEGRE	E EXAMINATION, DEC	C 2021	
		Fifi	th Semester		
		Biomed	ical Engineering		
	15UBM50)4 - PRINCIPLES C	F DIGITAL SIGNAL PR	ROCESSING	
		(Reg	ulation 2015)		
Dur	ation: Three hours			Maximum: 10	0 Marks
		Answer	ALL Questions		
		PART A -	$(5 \times 1 = 5 \text{ Marks})$		
1.	How many complex algorithm?	x multiplications are	need to be performed for	each FFT	CO1- R
	(a) (N/2)logN	(b) Nlog ₂ N	(c) $(N/2)\log_2 N$	(d) None of the	mentioned
2.	In IIR Filter desi Transformation is a	C	r Transformation, the E	Bilinear	CO2- R
	(a) Z-plane to S-pla	ine	(b) S-plane to Z-J	olane	
	(c) S-plane to J-plan	ne	(d) J-plane to Z-p	olane	
3.	Which of the following realization of the Fl	•	ed in the frequency sa	mpling	CO3- R
	(a) Poles are more in number on unit circle				
	(b) Zeros are more in number on the unit circle				
	(c) Poles and zeros at equally spaced points on the unit circle				
	(d) None of the me	ntioned			
4.	How many quanti multiplication?	zation errors are p	resent in one complex	valued	CO4- R
	(a) One	(b) Two	(c) Three	(d) Four	

5. FFT length in Barlett method is

CO5-R

- (a) Zero
- (b) One
- (c) L= $\frac{0.9}{\Delta f}$
- (d) None of the above

PART - B (5 x 3= 15Marks)

6. Compare the advantages of FFT over DFTs.

CO1- Ana

7. Write the properties of Butterworth filter?

CO2-R

8. Define Gibbs Phenomenon.

CO₃- R

9. Define dead band.

CO₄- R

10. List the advantages and disadvantages of Nonparametric Power Spectrum CO5-R Estimation.

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) Evaluate radix 2 – DIT FFT algorithm and obtain DFT of the CO1- App (16) sequence $x(n) = \{1,2,3,4,4,3,2,1\}$.

Or

- (b) Apply DFT and IDFT method for the given sequences CO1-App (16) $h(n) = \{1, 2, 3, 4\}$ and $x(n) = \{1, 2, -2, 1\}$ to find circular convolution.
- 12. (a) If $H_a(S) = \frac{1}{(s+1)(s+2)}$, find the corresponding H(z) using impulse CO2- App (16) invariant method for sampling frequency of 5 samples/Second.

Or

(b) Solve the following pole – zero IIR filter into a lattice ladder CO2-App (16) structure.

$$H(z) = \frac{1 + 2z^{-1} + 2z^{-2} + z^{-3}}{1 + \frac{13}{24}z^{-1} + \frac{5}{8}z^{-2} + \frac{1}{3}z^{-3}}$$

13. (a) Design an ideal high pass filter with a frequency response CO3- Ana (16) $H_d(e^{j\omega})=1$ for $\frac{\pi}{4} \leq |\omega| \leq \pi$ $= 0 \text{ for } |\omega| \leq \frac{\pi}{4}$

Find the values of h(n) for N = 11 using hamming window. Find H(z) and determine the magnitude response.

- (b) (i) Determine the frequency response of FIR filter defined by CO3-Ana y(n) = 0.45 x(n) + x(n-1) + 0.45 x(n-2). Calculate the phase and group delay.
 - (ii) Estimate the filter coefficient h(n) for N=7 obtained by CO3-Ana (10) sampling

$$H_{d}(e^{j\omega}) = e^{-j(N-1)\omega/2} \quad for \quad 0 \le |\omega| \le \frac{\pi}{2}$$

$$0 \quad for \quad \frac{\pi}{2} \le |\omega| \le \pi$$

- 14. (a) Explain in detail the errors resulting from rounding and truncation. CO4- Ana (16)
 Or
 - (b) i) Analyze the effects of co-efficient quantization in FIR filter? CO4- Ana (7)
 - ii) Distinguish between fixed point and floating point arithmetic. CO4- Ana (9)
- 15. (a) Explain discrete wavelet transform. CO5- U (16)

Oı

(b) Explain the Welch method of power spectrum estimation. CO5- U (16)