•	
Λ	

Reg. No. :					
O					

Question Paper Code: 54025

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2021

Fourth Semester

Agriculture Engineering

15UMA425 - PROBABILITY, STATISTICS AND NUMERICAL METHODS

	130MA423 - 1 KC	DADILITI,STATIS	ITCS AND NUMERICAL I	WIETHODS
		(Regulati	on 2015)	
		(Statistical tables 1	maybe permitted)	
Dur	ation: Three hours		M	aximum: 100 Marks
		Answer ALI	L Questions	
		PART A - (10 x	1 = 10 Marks)	
1.	If X is a continuous ra	andom variable. Relate	E(X)=	CO1- R
	(a) $\int_{-\infty}^{\infty} x f(x) dx$	(b) $\int_{-\infty}^{\infty} f(y) dy$	(c) $\int_{-\infty}^{\infty} f(x, y) dx$	(d) $\int_{-\infty}^{\infty} f(x,y)dy$
2.	If the random variab	le X has uniform dist	ribution in (-3,3), then its	CO1- App
	(a) 2	(b) 1.96	(c) 3	(d) 0
3.	When the population called	parameter is less than	a certain value, the test is	CO2-R
	(a) left – tailed test	(b) right tailed test	(c) two tailed test	(d) none of these
4.	Choose the correction	factor		CO2- App
	(a) T^2N	(b) T/N	(c) T^2/N (d) 0	
5.	The number of factor Design is	ors analysed in Com	pletely Randomised Block	CO3- R
	(a) Two	(b) One	(c) Three	(d) Four
6.	The number replica treatments in LSD is	tions of each treatr	ment and the number of	CO3- R
	(a) Equal	(b) Unequal	(c) Equal to two	(d) Equal to one
7.	In Cubic Spline, M ₀ =	$M_n = $		CO4-R
	(a) 1	(b) n	(c)0	(d) 3

8.	The value of any divided difference is arguments.					of	the order of the	ne	CO	O4- R				
	(a) e	qual			(b)	depen	dent		(c) unequ	al	(d) in	ndepend	ent
9.	Deg	gree of y(x) in Simpson's one third rule is								C	O5- R			
	(a) 1				(b)	2			(c	2) 3		(d) 4		
10.	The	conditio	on fo	r the	poin	$t x_0 t$	be a	max	kimum	value i	S		C	O5- R
	(a) <i>f</i>	f''(x) <	0		(b)	$f'(x_0$	0>(0		(c	$f''(x_0)$) < 0	(d) f	(x) < 0	0
						PA	RT –	- B (5	5 x 2=	10Marl	ks)			
11.	If X	is a con	tinu	ous 1	ando	m var	iable,	find	the v	alue of l	k if f(x)=2x, 0<	<x<3.< td=""><td>C</td><td>O1- R</td></x<3.<>	C	O1- R
12.	Defi	ne the e	xpec	eted	frequ	ency i	n test	s for	indep	endence	e of attributes.		C	O2- R
13.	Why	a 2x2 I	Latin	squ	are is	not p	ossib	le? E	Explaii	1.			C	O3- U
14.	State	e Newto	n's c	livid	ed di	fferen	ce for	rmul	a				CO4	- App
15.	State	e Simps	on's	1/3 ^{ro}	i rule								C	O5- R
16.	(a)	A RV x P(X) (i) Find (ii) Find	0 0 1 the	1 a valu	2 2a ie of	owing 3 2a 'a'	distr 4 3a	5 3a	`	6= 80M 7 5a	Marks)	CO1	- App	(8)
		(ii) Der	rive]	MGI	F, me	an and	d vari		of ex	ponentia	al distribution.	CO1	- App	(8)
	(b) (i) The pdf of $f(x,y) = \begin{cases} ax & 0 \le x \le 1 \\ a & 1 \le x \le 2 \\ 3a - ax & 2 \le x \le 3 \end{cases}$ then find 'a' and cumulative						CO1	- App	(8)					
	 3a - ax , 2 ≤ x ≤ 3 10 1								- App	(8)				

- 17. (a) (i) The means of two simple large samples of 1000 and 2000 CO2-App (8) members are 67.5 inches and 68 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation of 2.5 inches? Test at 5% level of significance.
 - (ii) The mean height and the standard deviation height of eight CO2-App randomly chosen soldiers are 166.9 cm. and 8.29 cm. respectively. The corresponding values of six randomly chosen sailors are 170.3cm and 8.50cm. respectively. Based on this data, can we conclude that soldiers are, in general, shorter than sailors at 5% level of significance?

Or

(b) (i) The following table gives the number of air-craft accidents that CO2- Ana occurred during the various days of a week. Test whether the accidents are uniformly distributed over the week at 5% level of significance.

Day	Mon	Tues	Wed	Thu	Fri	Sat
No. of	15	19	13	12	16	15
accidents						

- (ii) A sample of size 13 gave an estimated population variance of CO2- Ana (8) 3.0, while another sample of size 15 gave an estimate of 2.5. Could both samples be from populations with the same variance at 5% level of significance?
- 18. (a) The following table shows the lives in hours of four batches of CO3- Ana (16) electric lamps

Batches	Lives	Lives in hours								
1	1610	1610	1650	1680	1700	1720	1800			
2	1580	1640	1640	1700	1750					
3	1460	1550	1600	1620	1640	1660	1740	1820		
4	1510	1520	1530	1570	1600	1680				

Perform an analysis of variance on these data and show that a significant test does not reject their homogeneity.

Or

(8)

(8)

(b) Analyze the data given below and interpret the results. Table Value F(4,12)=3.26, F(12,4)=5.91

A(13)	B(09)	C(21)	D(07)	E(06)
D(09)	E(08)	A(15)	B(07)	C(16)
B(11)	C(17)	D(08)	E(10)	A(17)
E(08)	A(15)	B(07)	C(10)	D(07)
C(11)	D(09)	E(08)	A(11)	B(15)

19. (a) (i) Find f(3) by Newton's divided difference formula for the data

X	-4	-1	0	2	5
Y	12	33	5	9	35

(ii) The following data are taken from the steam table:

Temp ⁰ c	140	150	160	170	180
Pressure	3.685	4.854	6.502	8.076	10.225

Find the pressure at $t=142^{\circ}$

Or

(b) (i) From the following table find f(x) and hence find f(6) using CO4- App (8) Newton's divided difference formula.

$$x:$$
 1 2 7 8 $f(x):$ 1 5 6 4

(ii) Using cubic spline, find y(0.5) and y'(1) given $M_0 = M_2 = 0$ CO4- App (8) and the table

X	0	1	2
Y	-5	-4	3

20. (a) (i) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by Trapezoidal rule.

CO3- Ana

CO4- App

(16)

(8)

(8)

(ii) Evaluate $\int_{0}^{\pi} \sin x dx$ by Simpson's $\frac{1}{3}^{rd}$ rule.

Or

(b) (i) Evaluate $\int_{0.2}^{1.5} e^{-x^2} dx$ using the three point Gaussian Quadrature CO5- E

k = 0.1.

(ii) Apply Gauss three point formula to evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$.

CO5- E

(8)

(8)