٨
4
/ N

(a) Counter flow

Reg. No. :					

Question Paper Code: 55A04

B.E./B.Tech. DEGREE EXAMINATION, DEC 2021

Fifth Semester

Agriculture Engineering

15UAG504 – HEAT AND MASS TRANSFER FOR AGRICULTURAL ENGINEERING

(Approved Heat and Mass Transfer Data Book & Steam Tables are allowed)
(Regulation 2015)

Du	ration: Three hours			Maximum: 100 Mark
		Answer ALl	L questions	
		PART - A (10 2	x 1 = 10 Marks	
1.	In case of liquids and	to CO1- I		
	(a) Conduction.	(b) Convection.	(c) Condensation.	(d) Radiation.
2.	capacity	the ratio of therm	nal conductivity and	heat CO1- I
	(a) Heat capacity ratio)	(b) Thermal diffusivit	zy .
	(c) Specific heat		(d) Biot Number	
3.	The ratio of heat trans is called	efer by convection and	heat transfer by conduc	ction CO2- R
	(a) Reynolds number.		(b) Prandtl number	
	(c) Nusselt number.		(d) Grashof number.	
4.	The dimensionless nu	mbers involved in Nat	ural convection is/are	CO2- I
	(a) Grashoff Number	(b) Prandtl number	(c) Nusselt Number	(d) All of the above
5.	The emissivity for bla	ck body is		CO3- I
	(a) 0.	(b) 0.5.	(c) 0.75.	(d) 1.
6.	Insame direction.	heat exchanger, hot a	and cold fluid flow in	CO3- I

(c) Cross flow

(d) Mixed flow

(b) Parallel flow

7.	Fouling factor is used						
	(a)]	In heat exchang	ger design as a safety	factor.			
	(b)]	In case of New	tonian fluids.				
	(c)	When a liquid	exchanges heat with	a gas.			
	(d)]	In case of non-	Newtonian fluids.				
8.	Rad	Radiation shield should have					
	(a) l	High transimiss	sivity	(b) High conductivity			
	(c)]	Low reflectivity	y	(d) High reflectivity			
9.	The	unit of mass fl	low rate is		CO5- R		
	(a) l	kg.	(b) kJ/s.	(c) kg/s .	d) N.		
10.		e ratio of mole usivity of mass	•	momentum and molecular	CO5- R		
	(a) l	Fick's law.		(b) Schmidt Number.			
	(c) S	Scherwood Nu	mber.	(d) Eddy diffusion.			
			PART – B	3 (5 x 2= 10 Marks)			
11.	Def	ine fins (or) ex	tended surfaces.		CO1- R		
12.	Wha	at is difference	between free convec	ction and forced convection?	CO2- R		
13.							
14.							
15.	5. State Fick's law of diffusion.						
			PART –	C (5 x 16= 80 Marks)			
16.	(a) A wall of 0.6 m thickness having thermal conductivity of 1.2 CO1- App W/mK. The wall is to be insulated with a material having an average thermal conductivity of 0.3 W/mK. Inner and outer surface temperature is 1000°C and 10°C respectively. If heat transfer rate is 1400 W/m². Calculate the thickness of insulation. Or						
	(b)	in a boiling we consumers ta	mean diameter of 4 c vater pan for 4 minut aste. For how long boiled when taken	cm and initially at 25°C is placed tes and found to be boiled to the should a similar egg for same from a refrigerator at 5°C? Le =2 kJ/kg K, $\rho = 1250 \text{ kg/m}^3$.			

17. (a) Air at 25° C flows over a flat plate at a speed of 5 m/s and heated CO2- App to 135° C. The plate is 3 m long and 1.5 m wide. Calculate the local heat transfer coefficient at x= 0.5 m and the heat transferred from the first 0.5 m of the plate.

Or

- (b) Calculate the heat transfer from a 60W incandescent bulb at CO2-App (16) 115°C to ambient air at 25°C. Assume the bulb as a sphere of 50 mm diameter. Also find the percentage of power lost by free convection.
- 18. (a) Two large parallel plates are maintained at a temperature of 900 CO3- Ana (16) K and 500 K respectively. Each plate has an area of 6 m². Compare the net heat exchange between the plates for the following cases: (a) Both plates are black and (b) Plates have an emissivity of 0.5.

Or

- (b) A counter flow double pipe heat exchanger is used to heat water CO3- App from 20°C to 40°C by cooling an oil from 90°C to 55°C. The exchanger is designed for a total heat transfer rate of 59 kW with overall heat transfer coefficient of 340W/m²K. Calculate the surface area required.
- 19. (a) In a counter flow double pipe heat exchanger, water heated from CO4-U (16) 25° C to 65° C by oil with a specific heat of 1.45 KJ/KgK and mass flow rate is 0.9 Kg/s. The oil is cooled from 230° C to 160° C. If the overall heat transfer co-efficient is 420 W/m² °C, Calculate the following: (a) The rate of heat transfer, (b) The mass flow rate of water and (c) The surface area of the heat exchanger.

Or

(b) Calculate the net radiant heat exchange per m² area for two large CO4- Ana parallel plates at temperatures of 427°C and 27°C respectively. Effectiveness of hot plate and cold plate 0.9 and 0.6 respectively. If a polished aluminium shield is placed between them, find the percentage reduction in heat transfer, emissivity of the shield is 0.4

20. (a) Helium diffuses through a plate membrane of 2 mm thick. At the CO5- Ana inner side the concentration of helium is 0.025 Kg mole/m³. At the outer side the concentration of helium is 0.007 Kg mole/m³. What is the diffusion flux of helium through the membrane? Assume diffusion co-efficient of helium with respect to plastic is 1 X10⁻⁹ m²/s.

Or

- (b) (i)Air at 20°C with a velocity of 3.5 m/s flows over a flat plate. If CO5-U the plate is 0.5 m long, calculate the mass transfer coefficient.
 - (ii) Determine diffusion rate of water from bottom of a test tube CO5-U of 35 mm diameter and 55 mm long into dry air at 30°C. Take diffusion coefficient of water in air as 0.28×10^{-4} m²/sec