•	
Δ	
/	

Reg. No.:					

Question Paper Code: 93703

B.E./B.Tech. DEGREE EXAMINATION, MAY 2022

Third Semester Mechanical Engineering

19UME303-ENGINEERING THERMODYNAMICS

(Regulation 2019)							
Duration: Three hours				Maximum: 100 Marks			
	Answer ALL Questions						
PART A - $(10 \times 1 = 10 \text{ Marks})$							
1.	Mass Transfer cann	ot takes place in		CO1- R			
	(a) open system	(b) closed system	(c) Isolated system	(d) None the above			
2.	Which one is applic	cation of SFEE?		CO1- R			
	(a) IC Engines	(b) Evaporator	(c) Condenser	(d) Both b & c			
3.	The efficiency of ca	arnot cycle depends up	oon	CO2- R			
	(a) temperature limit	its	(b) pressure ratio				
	(c) volume compres	ssion ratio	(d) cut-off ratio and compression ratio				
4.	What is the relation between COP of heat pump and refrigerator						
	(a) COP of pump = COP of refrigerator-1 (b) COP of pump = COP of refrigerator+1						
	(c) COP of pump =	COP of refrigerator-2	2 (d) COP of pump = COP of refrigerator+2				
5.	Pure substance exar	nple is		CO1- R			
	(a) H2 (b) T	able Salt	(c) Gold	(d) All theabove			
6. What is the actual turbine inlet temperature in Rankine cycle?				CO4- R			
	(a) 700° C	(b) 800° C	(c) 550° C	(d) 1150° C			
7.	Which of the follow	wing relation is correc	t?	CO5- R			
	(a) dU=TdS-pdV		(b) dH=TdS+Vdp				
	(c) dG=Vdp-SdT		(d) all of the above				

8.	Maxwell's equations consists of	equations.		CO5- R	
	(a) four (b) three	(c) two	l) one		
9.	In sensible heating or cooling			CO1- R	
	(a) work done remains constant	(b) dry bulb temperature or air	remains constar	nt	
	(c) both of the mentioned	(d) none of the above			
10	The wet bulb temperature is the moistened bulb.	temperature recorded	by	CO1- R	
	(a) lowest	(b) highest			
	(c) atmospheric	(d) none of the mention	ed		
	PART	$T - B (5 \times 2 = 10 \text{ Marks})$			
11	State First Law of Thermodynamic	es for closed system.		CO3- U	
12	State Kelvin Planck's second law of	of thermodynamic.		CO4- U	
13	What do you understand by pure su	ubstance? Give Examples		CO1- U	
14	4 What is Clausius Clapeyron equation?				
15	Define Relative Humidity			CO6- R	
	PAI	RT – C (5 x 16= 80 Marks)			
16	(a) Derive steady flow energy eq expression for steam turbine.	uation and apply it to deduce an	CO3-App	(16)	
		Or			
	(b) Derive steady flow energy expression for steam nozzl	equation and apply it to deduce	an CO3-App	(16)	
17	is reversible, irreversible ar 14.0833KW of heat is reject	voir which of the following eng nd impossible Engine CASE 1- red CASE 2- If 4.75 KW of hea of heat is rejected, By using car and	ine If t is	(16)	
	(b) A Davarsible Heat Engine	Or	ot COA Ann	(16)	
	refrigerator which operates b 40^{0} C and - 20^{0} C. The heat t net work output of the comb	00 C. The engine drives a reversive tween reservoir at a temperature of the heat engine is 2000 KJ and ined engine and refrigerator plants of the refrigerator and net heat engine and refrigerator and net heat engine drives a reversion of the engine drives and the engine drives are reversion of the engine drives and the engine drives are reversion of the engine drives are	ble of the t is	(16)	

18 (a) Discuss the different phase change zones of T-S Diagram for CO1-U water when the temperature rises from solid phase to superheated phase

Or

- (b) A Vessel of volume 0.04 m³ contains a mixture of saturated water CO1-App and saturated steam at a temperature of 250⁰ C. The mass of liquid present is 9 Kg. Find the Pressure, Mass, Specific Volume, Specific Entropy, Specific Enthalpy, Specific Internal Energy
- 19 (a) Derive Tds equation when (i) T and V independent (ii) T and P CO5-U (16) independent

Or

- (b) Explain the Joule Thomson coefficient with the help of T-p CO5-U diagram and derive the expression for joule Thomson coefficient.

 Show that the value of this coefficient for an ideal gas is zero
- 20 (a) Explain the various psychometric process with neat sketches CO1-U (16)

.

Or

(b) An air conditioning system has the following conditions 1)outdoor CO6-App conditions 32°C dry bulb temperature and 75% relative humidity 2)required indoor conditions 25°C DBTand 70% relative humidity, amount of pre air circulated 200 m³/min per person 3) seating capacity 50 person to requied conditions is achieved first by cooling and dehumidification and then heating Determine the following 1) capacity of cooling coil in tonnes 2)capacity of heating coil iii) Mass of water vapour removed if coildewtemp14