٨
$\boldsymbol{\Box}$

Question Paper Code: 96703

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

Mechanical Engineering

		Mechanical E	Engineering			
	1	9UME603 - OPERA	ΓΙΟΝS RESEARCH			
		(Regulatio	ns 2019)			
Dura	ation: Three hours		Maxin	num: 100 Mai	rks	
		Answer ALL	Questions			
		PART A - (10 x	1 = 10 Marks)			
1. Graphical method can be applied to solve a LPP when there are onlyvariable						
	(a) One	(b) More than One	(c) Two	(d) Three		
2.	If a constraint with <	= type, then	variable should be adde	ed	CO1- U	
	(a) Slack	(b) Surplus	(c) Artificial (d) Decision		
3.	For solving an assign	ment problem, which	method is used		CO1- U	
	(a) MODI	(b) Hungarian	(c) German	(d) America	an	
4.	MODI method also c	alled as			CO1- U	
	(a) North West Corne	er rule	(b) Least Coast method			
	(c) U-V method		(d) Stepping Stone method			
5.	In which model, all t distance?	he nodes must be con	nnected with minimum		CO1- U	
(a) Shortest path (b) Maximal flow						
	(c) Minimal spanning	g tree	(d) Critical path			
6.	Which method is a pro	babilistic approach?			CO1- U	
	(a) CPM	(b) PERT	(c) PRIM'S	(d) DIJKST	RA'S	
7.	The inventory may be	e categorized as			CO1- U	
	(a) Raw materials inv	entory	(b) In-process inventory			
	(c) Finished goods in	ventory	(d) All the above			

8. The inventory needs to be maintained to decrease the

CO1- U

- (a) Shortage costs
- (b) Setup costs
- (c) Loss of goodwill
- (d) All the above
- 9. If a rectangular game has no saddle point, then the strategies of players are

CO1-U

(a) Pure strategies

(b) Mixed strategies

(c) Unique strategies

- (d) Specific strategies
- 10. One of the methods for simplifying m x n game with mixed strategy is

CO1-U

- (a) Dominance
- (b) Graphical
- (c) Saddle
- (d) Minimax

$$PART - B$$
 (5 x 2= 10 Marks)

11. Explain the term operation research.

CO1- U

12. Explain unbalanced transportation problem. How do you balance it?

CO1- U

13. Explain network with an example.

CO1- U

14. Explain buffer stock or safety stock.

CO1- U

15. Explain why we use graphical method.

CO1- U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16. (a) Use Graphical method to solve the following LP problem to

CO2- App (16)

Maximize
$$Z = 6X_1 + 14X_2$$

Subject to $5X_1 + 4X_2 \ge 60$

$$3X_1 + 7X_2 \le 84$$

$$X_1,\,X_2 \geq 0$$

Or

(b) Use Simplex method to solve the following LP problem to

CO2- App (16)

Maximize
$$Z = 3X_1 + 2X_2 + 5X_3$$

Subject to $1X_1 + 4X_2 \le 420$

$$3X_1 + 2X_3 \le 460$$

$$1X_1 + 2X_2 + X_3 \le 430$$

$$X_1, X_2, X_3 \ge 0$$

17. (a) Solve the following transportation problem

CO2- App (16)

Destination

A В Supply C D 20 7 11 8 50 1 Source 2 21 16 20 12 40 3 12 18 9 70 8

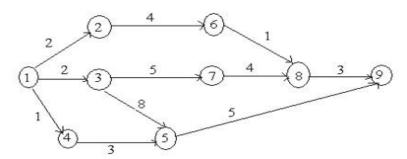
Demand 30 25 35 40

Or

(b) Solve the following assignment problem.

Machines

		I	II	III	IV	V
	1	11	17	8	16	20
Jobs	2	9	7	12	6	15
1005	3	13	16	15	12	16
	4	21	24	17	28	26
	5	14	10	12	11	15


- 18. (a) Consider the details of a distance network as shown below.
- CO2- App (16)

- (i) Construct a project network
- (ii) Determine the maximal flow from node 1 to 5

Arc $(i-j)$	Flow			
Aic (i – j)	f_{ij}	f_{ji}		
0-1	11			
0-2	12			
1-3	12			
2-1	1			
2-4	11			
3-4	7			
3-5	19			
4-5	4			

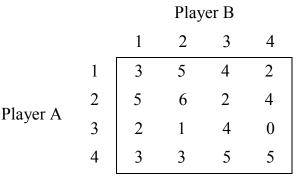
Or

(b) Find the critical path and calculate the earliest start, earliest CO2-App (16) finish, latest start, latest finish, total float, free float and independent float.

19. (a) A textile mill buys raw material from a vendor. The annual CO3-App (16) demand of the raw material is 9000 units. The ordering cost is Rs.100 per order and the carrying cost is 20% of the purchase price per unit month, where the purchase price per unit is Rs.1. Find (i) EOQ (ii) Time between two consecutive orders (iii) Number of orders per year (iv)Total cost w.r.t EOQ.

Or

(b) The cost of a bike is Rs. 3000. The salvage value (resale CO4-App value) and the running cost are given as under. Find the most economical replacement age of the bike.


Year	1	2	3	4	5	6	7
Running Cost	600	700	800	900	1000	1200	1500
Resale Value	2000	1333	1000	750	500	300	300

- 20. (a) Arrivals at a telephone both are considered to be Poisson at an CO3-App (16) average time of 8 min between our arrival and the next. The length of the phone call is distributed exponentially, with a mean of 4 min. Determine
 - (a) Expected fraction of the day that the phone will be in use.
 - (b) Expected number of units in the queue Expected waiting time in the queue.
 - (c) Expected number of units in the system.
 - (e) Expected waiting time in the system

Or

(b) Solve the following game.

CO3- App (16)

