A		Reg. No. :											
	[Question Pape	r Co	ode	52	003							
	B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022												
	Second Semester												
	Mechanical Engineering												
15UPH203–MATERIAL SCIENCE													
(Common to Chemical Engineering)													
(Regulation 2015)													
Dura	Duration: Three hours						М	axin	num:	100	Mar	ks	
	Answer ALL Questions												
		PART A - (1	0 x	1 = 1	0 M	arks)							
1.	Mobility of electrons is the C					CC)1 - R						
(a) flow of electron per unit field													
	(b) average electron drift velocity per unit field strength												
	(c) reciprocal of conductivity												
	(d) average collision	(d) average collision time per unit field strength											
2.	In a dielectric the pol	arization is	ization is CO					CC)1 - R				
	(a) linear function of	applied field	(b) square function of applied field										
	(c) logarithmic functi	on of applied field	(d) exponential function of applied field										
3.	At 0K semiconductor	acts as										CC)2-R
	(a) a superconductor	(b) a conductor	(c) an	insu	lator	•		(d) a se	emic	ondu	ictor
4.	If the Hall coefficien	nt is negative then the	e sen	nicon	duct	or is						CC)2-R
	(a)) n-type c) d)	(b) p-type	(c) int	rinsi	c			(d) ext	rinsi	с	
5.	The magnitude of Bo	hr magneton is										CC)3-R
	(a) 9.27 X 10 ⁻²⁴		(b) 9.2	7 X	10 ⁻²⁴	A/r	n^2					
	(c) 9.27 X 10^{-24} A / m	1	(d) 9.2	7 X	10 ⁻²⁴	A / :	m ³					

6.	A superconductor in superconducting state offers resistance					CO3-R				
	(a) i	nfinite	(b) zero	(c) low	(d) high					
7.	Met	allic glasses are				CO4-R				
	(a) high strength glasses			(b) rapidly quenched metals						
	(c) glasses with metallic impurities			(d) metals which are in clay form						
8.	In nanomaterials with decrease of size the inter atomic spacing					CO4-R				
	(a) increases			(b) decreases						
	(c) first increases and then decreases			(d) remains unchanged						
9.	A line imperfection is called as COS									
	(a) i	nterstitial defect	(b) dislocation	(c) grain boundary	(d) stackin	tacking fault				
10.	"It is impossible to get a continuous supply of work from a body by CO5-R cooling it to a temperature lower than that of its surroundings" is the statement of									
	(a) (Clausius	(b) Mosotti	(c) Kelvin	(d) Kelvin	n-Planck				
			PART – B (5 x	2= 10Marks)						
11.	. Recognize the significance of Fermi energy.					CO1-R				
12.	Distinguish between intrinsic and extrinsic semiconductors.					CO2-U				
13.	Show that superconductor is a perfect diamagnet					CO3-U				
14.	List two applications of nanomaterials					CO4-R				
15.	. State Boyle's law					CO5-R				
	PART – C (5 x 16= 80Marks)									
16.	(a)			ctron theory, formulate the electrical conductivit		(12)				
	(ii) The free electron density in copper at 0K is $8.5 \times 10^{28} / \text{m}^3$ CO1-App and mass of the electron is 9.1×10^{-31} kg. Compute the Fermi energy.					p (4)				
	Or (b) (i) Compute the local field for a cubic crystalline structure CO1-App (10									
	(b)	· / •		•	CO1-Ap	p (10) (6)				
	(ii) Arrive at Clausisus-Mosotti relation CO1-U (6									

17.	(a)	With necessary mathematical background, show that the Fermi level is located exactly at the midpoint of forbidden energy gap. Or	CO2-U	(16)				
	(b)	(i) Show that the Hall coefficient is positive for p type semiconducting material	CO2-U	(12)				
		(ii) List four applications of Hall effect	CO2- U	(4)				
18.	(a)	(i) On the basis of domain theory, explain the hysteresis effect in ferromagnetic materials	CO3-U	(10)				
		(ii) Distinguish between hard and soft magnetic materials Or	CO3-U	(6)				
	(b)	(i) Why do we prefer type II superconductor for making permanent magnets?	CO3-U	(10)				
		(ii) Differentiate between Type – I and Type – II superconductors	CO3-U	(6)				
19.	(a)	Illustrate the preparation, properties and applications of metallic glasses	CO4-U	(16)				
Or								
	(b)	Explain the synthesis of nano materials by chemical vapour deposition and ball milling techniques	CO4-U	(16)				
20.	(a)	(i) Distinguish ductile and brittle fractures	CO5-U	(8)				
		(ii) Explain the four factors affecting the creep resistance of materials		(8)				
		Or						
	(b)	Show that the area of the temperature entropy diagram of a Carnot cycle is the useful work done by the engine in one cycle	CO5-U	(16)				

##