Reg. No.:					

Question Paper Code: 44704

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

Mechanical Engineering

	14	UME404 - THEF	RMAL ENGINEERING		
		(Regula	ation 2014)		
Du	ration: Three hours			Maximum: 100 Marks	
		Answer A	LL Questions		
		PART A - (10	$0 \times 1 = 10 \text{ Marks}$		
1.	The thermodynamic cyc	cle working with	air as working cycle is kn	own as	
	(a) induction stoke		(b) compression stol	ce	
	(c) power stoke		(d) exhaust stoke		
2.	Constant volume cycle	refers to			
	(a) Diesel cycle		(b) Brayton cycle		
	(c) Otto cycle		(d) Dual cycle		
3.	The power developed in	side the cylinder	is called		
	(a) Mechanical effic	ciency	(b) Brake power		
	(c) Indicated power		(d) Thermal efficiency		
4.	Carburettor is used for				
	(a) S.I. engines		(b) Gas eng	ines	
	(c) C.I. engines		(d) None of	the above	
5.	Increasing the velocity	and decreasing th	e pressure is done by		
	(a) Diffuser	(b) Turbine	(c) Compressor	(d) Nozzle	
6.	De-Laval turbine is an e	example of			

(b) Reaction turbine

(d) Middle head turbine

(a) Impulse turbine

(c) Low head turbine

7.	For complete interc	cooling, the temperate	ure at the inlet and o	exit of the compresso	or are	
	(a) $T_i < T_e$	(b) $T_i > T_e$	(c) $T_i = T_e$	(d) $T_i \neq T_e$		
8.	In reciprocating air done by the	compressor, the me	thod of controlling	the quantity of air de	elivered is	
	(a) Throttle con	ıtrol	(b) Clearance	control		
	(c) Blow off co	ontrol	(d) All the abo	ove		
9.	The C.O.P of an air	refrigeration system	n is a vap	oour compression sys	tem.	
	(a) More than		(b) Less than			
	(c) Equal to		(d) No such c	omparison		
10.	A sling psychrometer measures temperature of					
	(a) Dry bulb		(b) wet bulb			
	(c)dew point		(d) both dry b	ulb and wet bulb		
		PART - B ($5 \times 2 = 10 \text{ Marks}$			
11.	Define air standard	efficiency and mean	effective pressure.			
12.	List the methods us	sed to find the friction	n power.			
13.	Name the various t	ypes of nozzles.				
14.	What the use is of i	nter cooler?				
15.	Define C.O.P of a 1	efrigerator.				
		PART - C (5	$5 \times 16 = 80 \text{ Marks}$			
16.		pressure and tempera		ele are 100 kPa and 2	27° <i>C</i> . The	
		the P-V diagram and of the air standard O	_	ssures and temperatu	ires at all	
		ealculate the specific ession ratio of 8:1	work and thermal	efficiency of the cy	cle for a	
	Take for air C_v	= $0.72 kJ/kg$ and γ =	1.4.		(16)	

Or

(b)	A four stroke SI engine has the compression ratio of 6 and swept volume of 0.15 m ³ .
	Pressure and temperature at the beginning of compression are 98 kPa and 60°C.
	Determine the pressure, volume and temperatures at all salient points if heat
	supplied is 150 kJ/kg. Also find out entropy change, work done, efficiency and mean
	effective pressure of cycle assuming $C_p = 1 \text{ kJ/kg} \cdot \text{K}$, $C_v = 0.71 \text{ kJ/kg} \cdot \text{K}$. Also plot
	the cycle on T-S diagram. (16)

- 17. (a) (i) Explain the working of 4 stroke cycle diesel engine with neat sketch. (8)
 - (ii) Differentiate between SI and CI engines. (8)

Or

- (b) Discuss with suitable sketches the following ignition systems
 - (i) Coil or battery ignition system (8)
 - (ii) Magneto ignition system (8)
- 18. (a) Evaluate the throat area, exit area and exit velocity for a steam nozzle to pass a mass flow of $0.2 \, kg/s$ when inlet conditions are $10 \, bar$ and $250^{\circ}C$ and the final pressure is $2 \, bar$. Assume expansion is isentropic and that the inlet velocity is negligible. Use $pv^{1.3} = \text{constant}$.

Or

- (b) Steam at 10.5 bar and 0.95 bar dryness is expanded through a convergent—divergent nozzle. The pressure of steam leaving the nozzle is 0.85 bar. Find its velocity of steam at throat for max. Discharge, the throat area and steam discharge if the throat area is 1.2cm². Assume the flow is isentropic and there are no friction losses. Take n= 1.135.
- 19. (a) A single stage double acting air compressor is required to deliver $14 m^3$ of air per minute measured at $1.013 \ bar$ and $15^{\circ}C$. The delivery pressure is $7 \ bar$ and the speed $300 \ r.p.m$. Take the clearance volume as 5% of the swept volume with the compression and expansion index of n = 1.3. Estimate
 - (i) swept volume of the cylinder
 - (ii) delivery pressure
 - (iii) indicated power (16)

Or

- (b) Explain with neat sketch the construction and working roots blower and vane type compressor. (16)
- 20. (a) Describe the construction and working of Ammonia-water vapour absorption refrigeration system. (16)

Or

(b) In a standard vapour compression refrigeration cycle, operating between an evaporator temperature of − 10°C and a condenser temperature of 40°C, the enthalpy of the refrigerant, Freon-12, at the end of compression is 220 kJ/kg. Show the cycle diagram on T-s plane and calculate: (i) The C.O.P. of the cycle. (ii) The refrigerating capacity and the compressor power assuming a refrigerant flow rate of 1 kg/min. The properties of the Freon-12 are given in the table below.

t(°C)	p(MPa)	h _f (kJ/kg)	$h_g (kJ/kg)$		
-10	0.2191	26.85	183.1		
40	0.9607	74.53	203.1		

(16)