С		Reg. No. :											
		Our officer Desc		7 - 1		200	_]						
	Question Paper Code: 53805												
B.E./B.Tech. DEGREE EXAMINATION, MAY 2022													
		Third S	Seme	ester									
		Computer Science	e an	d En	gine	ering	3						
		15UIT305 OPER	ATI	NG S	YST	EMS							
	(Common to Information Technology)												
		(Regulat	tion	2015)								
Dur	ation: Three hours							Maxi	mur	n: 1()0 N	larks	5
		Answer AI	LL Q	uesti	ons								-
		PART A - (5	x 1 =	= 5 N	/lark	s)							
1.	The number of processes completed per unit time is known as							CO1- U					
	(a) Output	Output (b) Throughput (c) Efficiency (d) C			apacity								
2.	Termination of the proc	ermination of the process terminates					CO2- U						
	(a) First thread of the p	b) First thread of the process (b) First two thread of the process						ess					
	(c) All threads within the process				(d) No thread within the process								
3.	If the resources are al occur.	ways preempted from	the	same	e pro	cess,		c	an			CO3	3- U
	(a) Starvation	Starvation (b) Deadlock (c) System crash (d) A				ging							
4.	Thrashing the	CPU utilization.										CO	- U
	(a) Increases	(b) Keeps constant	(c) In	finity	y			((d) D	ecre	ases	
5.	What is raw disk?											CO	5- U
	(a) Disk without file system (b) Disk lacking logical file system												
	(c) Disk having file system (d) Empty disk												
		PART – B (5	x 3=	= 15 N	Mark	s)							
6.	Define operating syster	m. Write its services.									C	01-1	U
7.	Develop synchronization code for readers and writers problem.						C	CO2- App					
8.	Give four necessary conditions for deadlock to occur.						CO3- U						
9.	With a neat sketch, exp	plain the concept of den	nand	pagin	ıg.						CO4- U		
10.	How can the index blocks be implemented in the indexed allocation scheme?					ne?	C	05 -1	U				

(a) Define process and co-operating process. Draw process state diagram CO1- U (16) and explain all states. With a neat sketch, explain the concept of inter process communications.

Or

- (b) With neat sketches, explain distributed, clustered, multi processor and CO1- U (16) real time systems.
- 12. (a) Consider the following set of processes, calculate average waiting time CO2- App (16) and average turn around time using FCFS, SJF, Priority (Highest number implies highest priority) and RR (time quantum = 5sec) CPU scheduling algorithms. All the processes are arrived in the following order at time 0 sec.

Process	Burst Time(sec)	Priority
А	10	5
В	5	10
С	8	4
D	13	8

Or

- (b) Define critical section. What are the minimum requirements that CO2- App (16) should be satisfied by a solution to critical section? Explain Peterson algorithm for two process synchronization to critical section problem.
- 13. (a) Consider a system with 5 processes (P₀,P₁,P₂,P₃, P₄) and 3 resource CO3-U (16) types such as 7 instances of A, 2 instances of B, 6 instances of C. Resource-allocation state at time t₀:

Process	Al	locat	ion	Maximum				
FIOCESS	Α	В	С	Α	В	С		
P ₀	0	1	0	1	1	0		
P ₁	2	0	0	4	0	2		
P ₂	3	0	3	4	0	3		
P ₃	2	1	1	3	1	1		
P ₄	0	0	2	0	0	4		

(i) Write the Available and Need matrix.

(ii) Is the system in a deadlocked state? If yes, justify your answer for deadlock. If not, which sequence results in finish[i] == true for all P_i ?

Or

- (b) Define paging. With neat diagram, explain hardware support for paging CO3- U (16) and how logical address is translated into physical address.
- 14. (a) Consider the following page reference string CO4-U (16)
 5, 6, 7, 0, 5, 1, 2, 0, 5, 3, 0, 4, 2, 3, 6, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1
 How many page faults would occur for the following replacement algorithms?
 LRU, FIFO and Optimal
 Assuming three frames that all frames are initially empty.

Or

- (b) Define file access and directory. Explain the concept of sequential and CO4-U (16) direct access methods. Explain one level, two level and tree structured directories.
- 15. (a) A hard disk having 500 cylinders / tracks, numbered from 0 to 499. CO5-U (16) The drive is currently serving the request at cylinder 143, and the previous request was at cylinder 125. The status of the queue is as follows: 86, 470, 13, 177, 448, 150, 102, 175, 130 What is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests for each of the following disk -scheduling algorithms?
 (i) FCFS
 (ii) C-SCAN
 - (iii) LOOK
 - (iv) SSTF

Or

(b) Summarize the importance of man storage structure. CO5- U (16)