A		Reg. No. :									
Question Paper Code: U2M03											
B.E./B.Tech. DEGREE EXAMINATION, MAY 2022											
Second Semester											
Computer Science and Engineering											
21UMA203- Differential Equations and Complex analysis											
(Regulations 2021)											
(Common to information technology)											
Dur	ation: Three hours	Maximum: 100 Marks									
Answer ALL Questions											
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$											
1.	$\frac{1}{(D-m)^2}e^{mx} = -$			CO1-Ap							
	(a)) xe^{mx}	(b)x² <i>e^{mx}</i>	$(c) \frac{x^2}{2} e^{mx}$	(d) $\frac{x^2}{m}e^{mx}$							
2.											
	(a) Ae ^x + B e ^{$-\frac{x}{4}$}	(b) $Ae^{-x}+Be^{5x}$	(c) $(A+Bx)e^{2x}$	(d) $Ae^{x}+Be^{4x}$							
3.	$\operatorname{Div}_{r}^{-} = $			CO2-App							
	(a) 0	(b)1	(c)3	(d) \bar{r}							
4.	Divergence of vector $\mathbf{x}^2 \mathbf{i} + \mathbf{y}^2 \mathbf{j} + \mathbf{z}^2 \mathbf{k}$ at (1, 2, -3) is CO2-App										
	(a) 8	(b) 4	(c)-3	(d) 0							
5.	The critical point of the transformation $w = z + \frac{1}{z}$ are CO3- Ap										
	a) ±1	b) ±2	c) ± <i>i</i>	d) - <i>i</i>							
6.	The function $f(z) =$	$\frac{1}{z^2+4}$ is not analytic a	at $z = $	CO3- App							
	(a) 2	b) -2	c)2i	d)±2i							
7.	Simple pole is a po	le of order		CO6-U							
	(a) 1	(b) 4	(c) 3	(d) -4							

8.	$\int_{C} \frac{e^{z}}{z-2} dz$ where C is the unit circle with centre as origin is												
	(a)	0	(d) 1	(c) 2	(d) π								
9.	The	PDE obtained f		CO5-App									
	(a) (3z = px + qy	(b) $py - qx = 0$	(c) z = pq	(d) $px+qy = 0$								
10.	The	The subsidiary equations of Lagrange's linear equation is CO5											
	(a)	$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$	(b) $\frac{dx}{P} + \frac{dy}{Q} + \frac{dz}{R}$	(c) $\frac{dx}{P} - \frac{dy}{Q} - \frac{dz}{R}$	(d) Pp +Q	(d) Pp +Qq= R							
	$PART - B (5 \times 2 = 10 Marks)$												
11.	Find the Wronskian of y_1 , y_2 of $y^{"} - 2y' + y = e^x \log x$					CO1-App							
12.	Compute $\nabla \varphi$, if $\varphi = x^2 + y^2 + z^2$ at (1, -1, 1).					CO2-App							
13.	Pro	ve that $u = e^x \cos x$		CO3-App									
14.	Using Cauchy's integral formula, Evaluate $\int_{c} \frac{z}{z-2} dz$ where C is $ z = 1$ CO4-App												
15.	Find the particular integral of $(D^2 - 2DD' + D'^2)Z = \cos(x - 3y)$ PART – C (5 x 16= 80Marks)					CO5-App							
16.	(a)	(i) Solve $(D^2 + 2)$	$D + 2 y = e^{-2x} + \cos 2x$		CO1-A	.pp (8	5)						
	(ii) Using method of variation of parameters solve $(D^2 + a^2)y = Cosec ax$				CO1- <i>A</i>	CO1- App (8)							
	Or												
	(b) (i) Solve $(x^2D^2 -$		$(xD + 1)y = \left(\frac{\log x}{x}\right)^2$		CO1- A	App (8	;)						
	(ii) A colony of bacteria of growing exponentially. At time t=0 it has 10 bacteria in it and at time t = 4 it has 2000. At what time will it have 100,000 bacteria?					App (8)						
17.	(a)			ane for $\int_C (3x^2 - y)$ boundary of the region	CO2-A	CO2-App (16							

U2M03

(b) Verify Gauss divergence theorem for the vector function $\vec{F} = CO2$ -App (16) $4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ over the cube bounded by x = 0, y = 0, z = 00 and x = 1, y = 1, z = 1

Or

18. (a) (i) Determine the analytic function whose real part is CO3-App (8)

$$\frac{\sin 2x}{\cosh 2y - \cos 2x}$$
(ii) Determine the image of $|z - 2i| = 2$ under the transformation CO3-App (8)
 $w = \frac{1}{z}$
Or

(b) (i) If f(z)=u+iv is an analytic function then Prove that CO3-App (8) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f^1(z)|^2$ (ii) Determine the bilinear transformation solution matrix z = 1 i. 1. CO2 App (8)

(ii) Determine the bilinear transformation which maps z = 1,i,-1 CO3-App (8) respectively onto w = i,0,-i

19. (a) (i) Using Cauchy's integral formula , Evaluate $\int_{c} \frac{z+1}{(z-3)(z-1)} dz$ CO4-App (8) where C is the circle |z| = 2(ii) Evaluate $f(z) = \frac{7z-2}{z-1}$ in Laurent's series valid in the CO4-App (8)

(ii) Evaluate $f(z) = \frac{7z - 2}{z(z+1)(z-2)}$ in Laurent's series valid in the CO4-App (8) region 1 < |z+1| < 3

Or

Or

- (b) Using Contour integration Prove that CO4-App (16) $\int_{-\pi}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{a + b} a > b > 0$
- 20. (a) (i) Solve : $(D^2 3DD' + 2D'^2)Z = e^{3x-2y} + Sin(3x + 2y)$ CO5-App (8) (ii) Solve : x(y-z)p + y(z-x)q = z(x-y) CO5- App (8)

(b) A tightly String with fixed end points x=0 and x=1 is initially at CO5- App (16) rest in its equilibrium position. If its set vibrating giving each point at velocity λ(1x-x²). Determine the displacement function y(x,t).

U2M03