D N						
Reg. No.:						
_			1		1	

Question Paper Code: 42002

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Second Semester

Civil Engineering

14UMA202 - ENGINEERING MATHEMATICS - II

(Common to ALL Branches)

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions.

PART A - $(10 \times 1 = 10 \text{ Marks})$

	(a) ± 2	(b) $\pm 2i$	(c) $\pm i\sqrt{2}$	(d) $\sqrt{2}$	
2.	The particular inte	egral of $(4D^2 - 4D + 1)$	y = 4 is		
	(a) -4	(b) 4	(c) -2	(d) -3	
3.	The gradient of a scalar function is defined as				
	(a) ∇/∂	(b) $\nabla * \emptyset$	$(c) \not O \nabla$	(d) \(\nabla \)	

4. By stokes theorem, $\int_{c} \vec{r} \, d\vec{r} =$ ______

1. The roots of $(D^2+2)y$ are

(a) π (b) 1 (c) 0 (d) None of these 5. The derivative of f(z) at z_0 is

(a) l (b) f(z) (c) $f(z_0)$ (d) $f'(z_0)$

6.	The invariant points of $w = \frac{2z-5}{z+4}$ are					
	(a) $z = 2, -1$	(b) $z = -1 \pm 2i$	(c) $z = 0.1$	(d) $z = 2 \pm 3i$		
7.	Which of the following is not an analytic function?					
	(a) $\sin z$	(b) z	(c) $\sinh z$	(d) \overline{z}		
8.	Conformal mapping is a mapping which preserves angle					
	(a) in magnitude		(b) in sense			

- (c) both in magnitude and sense (d) Either in magnitude or in sense $L^{-1} \left[\frac{1}{1} \right] = 0$
- 9. $L^{-1} \left[\frac{1}{s^2 + a^2} \right] =$ (a) $\frac{\sinh at}{a}$ (b) $\frac{\sin at}{a}$ (c) $\sinh at$ (d) $\sin at$
- 10. Laplace transforms is an _____ transform.
 - (a) Discrete(b) Discrete time(c) Data independent(d) Integral

PART - B (5 x
$$2 = 10 \text{ Marks}$$
)

- 11. Solve $(D^4 2D^3 + D^2)y = 0$.
- 12. Find $grad \phi$ at (1,0,2) where $\phi = x^2y + 2xz^2 8$.
- 13. Find the values of a & b such that the function $f(z) = x^2 + ay^2 2xy + i(bx^2 y^2 + 2xy)$ is analytic.
- 14. State Cauchy's integral formula.
- 15. Find the Laplace transform of $\sin 3t \sin 5t$.

PART - C (5 x
$$16 = 80 \text{ Marks}$$
)

16. (a) (i) Solve the equation
$$(1 + 2x)^2 y'' - 6(1 + 2x)y' + 16y = 8(1 + 2x)^2$$
. (8)

(ii) Solve the equation
$$(D^2 + 4D + 3)y = e^{-x} \sin x$$
. (8)

Or

(b) (i) Solve
$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log x}{x^2}$$
. (8)

- (ii) The number *N* of bacteria in a culture grew at a rate proportional to *N*. The value of *N* was initially 100 and increased to 332 in 1 hour. What was the value of *N* after 3/2 hours? (8)
- 17. (a) Verify Stoke's theorem for $\vec{F} = (2x y)\vec{\imath} yz^2\vec{\jmath} y^2z\vec{k}$ where S is the upper half surface of the sphere $(x^2 + y^2 + z^2) = 1$ and C is the circular boundary on Z = 0 plane. (16)

Oı

- (b) Verify Gauss divergence theorem for $\vec{F} = (x^2 yz)\vec{i} + (y^2 xz)\vec{j} + (z^2 xy)\vec{k}$ and S is the surface of the rectangular parallelepiped bounded by x = 0, x = a, y = 0, y = b, z = 0 and z = c. (16)
- 18. (a) Find the Bilinear transformation that maps $z=\infty$, I, 0 in to the points w=0, -i, ∞ respectively. Also find its fixed Points. (16)

Or

- (b) (i) Show that the function $u = log \sqrt{x^2 + y^2}$ is harmonic and also find its conjugate. (8)
 - (ii) Obtain the bilinear transformation which maps the points z = 1, i, -1 onto the points w = 0, l, ∞ respectively. (8)
- 19. (a) Evaluate $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$ by contour integration. (16)

Or

- (b) (i) Show that the function $u = log \sqrt{x^2 + y^2}$ is harmonic and also find its conjugate (8)
 - (ii) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ using contour integration. (8)

20. (a) (i) Find the Laplace Transform of the square-wave function of period 'a' given by

$$f(t) = \begin{cases} 1, & 0 < t < \frac{a}{2} \\ -1, & \frac{a}{2} < t < a \end{cases}$$
 (8)

(ii) Using Convolution theorem evaluate $L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$. (8)

Or

- (b) (i) Solve $y'' + 4y' + 4y = e^{-t}$, y(0) = 0 and y'(0) = 0 using Laplace transform. (8)
 - (ii) Compute y(1,1) by using Runge-Kutta method of fourth order, given $\frac{dy}{dx} = y^2 + xy, y(1) = 1. \tag{8}$

4