A
Δ
∡ ъ

Reg. No. :									
------------	--	--	--	--	--	--	--	--	--

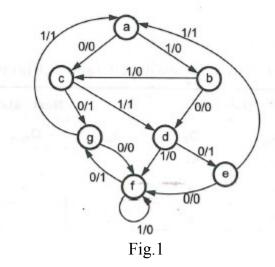
Question Paper Code: 53306

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

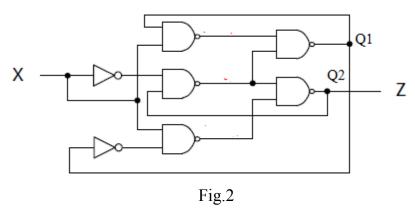
Third Semester

Electrical and Electronics Engineering

15UEE306 -DIGITAL LOGIC CIRCUITS


		13CEE300 BIGH	THE LOGIC CIRCOTTS				
		(Regu	lation 2015)				
Dura	ation: Three hours	: 100 Marks					
		Answer A	ALL Questions				
	PART A - $(10 \times 1 = 10 \text{ Marks})$						
1.	Convert binary 11111	CO1- R					
	(a) EE2 ₁₆	(b) FF2 ₁₆	(c) 2FE ₁₆	(d) FD2 ₁₆			
2.	Any signed negative b	CO1- R					
	(a) MSB	(b) LSB	(c) Byte	(d) Nibble			
3.	Canonical form is a un	CO2- R					
	(a) SOP	(b) Minterm	(c) Boolean Expressions	(d) POS			
4.	. The format used to present the logic output for the various combinations of logic inputs to a gate is called						
	(a) Truth table.		(b) Input logic function.				
	(c) Boolean constant		(d) Boolean variable				
5.	What is a shift register that will accept a parallel input, or a bidirectional serial load and internal shift features, called?						
	(a) Tri state	(b) End around	(c) Universal	(d) Conversion			
6. A basic S-R flip-flop can be constructed by cross-coupling of which basic logic gates?				CO3- R			
	(a) AND or OR	(b) XOR or XNO	R (c) NOR or NAND	(d) AND or NOR			

7.	Table that is not a part of asynchronous analysis procedure is					CO4- R	
	(a) T	Γransition table	(b) State table	(c) Flow table	(d) Excitation	on table	
8.	How	w much locations a	ın 8-bit address code c	an select in memory?		CO4- R	
	(a) 8	3 locations	(b) 256 locations	(c) 65,536 locations	(d) 131,072	locations	
9.	Eacl	h unit to be model	ed in a VHDL design	is known as	CO5-		
	(a) Behavioral model			(b) Design architecture			
	(c) I	Design entity		(d) Structural model			
10.	the l	local component? Port map	ng describes the conn	(b) One to many map	ty port and	CO5-R	
	(c) (One to one map	DADT D (5	(d) Many to many map			
			PART - B (5 x)	2= 10 Marks)			
11.	Why	y Excess-3 code is	called self compleme	nting code?		CO1- U	
12.	Drav	w the circuit diagr	am of full adder using	two half adders.		CO2- R	
13.	Compare Moore and Melay circuits.						
14.	. Define static hazard.					CO4- R	
15.	5. What are the various modeling techniques in VHDL?						
			PART - C (5	x 16= 80 Marks)			
16.	(a)	(i) Encode the be Hamming Code.	pinary word 1011 into	o seven bit even parity	CO1- U	(10)	
		(ii) Write short n	otes on binary weighte	ed code.	CO1- U	(6)	
			Or				
	(b)	(i) With a neat TTL NAND gate	-	e working of two input	CO1- U	(10)	
		(ii) Compare tote	em pole and open colle	ector outputs.	CO1- U	(6)	
17.	(a)	Design a 3:8 deand maxterm ger	_	operation as a minterm	CO2- Ana	(16)	
	<i>a</i> >			4	G02 4	(1.0)	
	(b)	Design a circuit equivalent gray of		r bit binary code into its	CO2- Ana	(16)	


18. (a) Design a MOD-7 synchronous counter using JK flip flop and CO3- Ana implement it. Also draw its timing diagram. (16)

Or

(b) Design a clocked sequential circuit for the state diagram CO3-Ana shown in Fig.1 using T flip flop. (16)

- 19. (a) (i) Analyze the following asynchronous network shown in Fig.2 using a flow table. Starting in the total stable state for which X = Z = 0.
 - (ii) Are there any races in the flow table?

Or

(b) Show how to programme the fusible links to get a 4 bit gray CO4-Ana code from the binary inputs using PLA and PAL and compare the design requirements with PROM.

CO4-Ana

(16)

20. (a) Write a VHDL program for full adder using structural CO5-U modeling and 1: 4 DMUX using data flow modeling. (16)

Or

- (b) (i) Explain the various operators supported by VHDL. CO5-U (8)
 - (ii) Write a VHDL code to realize a decade counter with CO5-U (8) behavioral modeling.