Reg. No.:					

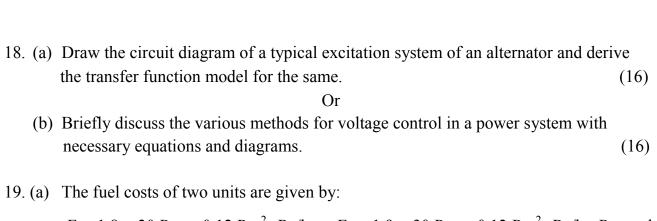
Question Paper Code: 47302

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Seventh Semester

Electrical and Electronics Engineering

14UEE7	02 – POWER SYS	TEM OPERATION AND	CONTROL		
	(Re	gulation 2014)			
Duration: Three hours	3		Maximum: 100 Marks		
	Answe	er ALL Questions			
	PART A -	(10 x 1 = 10 Marks)			
1. The area under the	daily load curve giv	res			
(a) The number of	units generated in a	a day (b) Average load of the	he day		
(c) The load factor	r of the day	(d) The number of units generated in the year			
2. The load factor for	domestic loads may	be taken as			
(a) about 85%	(b) 50-60%	(c) 25-50%	(d) 20-15%		
3. In an ALFC loop, the	he frequency deviat	ion can be reduced using _	controller.		
(a) Differential	(b) Integral	(c) Proportional	(d) All of these Plan		
4. The time constant of	of power system who	en compared to a speed go	vernor is		
(a) Less	(a) Less (b) More		(d) None of these		
5. The different types	of tap changing tran	nsformers are			
(a) Off-load	(b) On load	(c) Both (a) and (b)	(d) Either (a) or (b)		
6. Which is treated as	the heart of an exci	tation system?			
(a) Main exciter (b) Pilot exciter		(c) Rotor field exciter	(d) AVR		
7. The optimum alloca	ation of the generate	or at each generating station	n at various station load		
levels is called					
(a) State estimation	on (b) Unit commit	ment (c) Economic dispato	ch (d) None of these		


(b) Does not change (c) Decreases

(d) None of these

8. When load on a thermal unit is increased, then fuel input

(a) Increases

9. A St	tate estimation scheme is					
(a) Lagrangian function method(c) Lyapunov method		(b) Negative gradient method(d) Weighted least square method				
	system is in secure condition, every system remain secure then the operation		•			
(a) A	lert mode (b) normal mode PART - B	(c) 16-bit (5 x 2 = 10 Marks)	(d) contingency mode			
11. Dr	aw a typical load curve.					
12. Di	fferentiate static response from dyn	amic response of an A	ALFC loop.			
	the gain and time constants of an except transfer function of this exciter.	iter are 100 and 0.5 se	econds respectively. Compu	te		
14. Dr	aw the incremental fuel cost curve	for a thermal plant.				
15. De	efine state estimation of a power sys	stem.				
	PART - C	$(5 \times 16 = 80 \text{ Marks})$				
16. (a)	(i) Why is the load on a power sta load on the operation of the po		re the effects of variable (8	3)		
	(ii) A 100 MW power station deli is shut down for the rest of ea 45days each year. Calculate it	ch day. It is also shut	down for maintenance for	d 8)		
		Or				
(b)	State the importance of load forec to forecast the load in an intercon	• •	•			
17. (a)	Derive the transfer function mode system with necessary equations.	= -	ontrol of a Double area power			
		Or				
(b)	Two alternators operate in paralle the machines are 200 MW and 500. Their governors are adjusted so the load supplied by each unit and system.	0 MW. Each has a dr at the frequency is 10	oop characteristic of 4% 0 % on full load. Calculate	Z		

 F_1 = 1.8 + 20 P_{G1} + 0.12 P_{G1} Rs/hr., F_2 = 1.9 + 30 P_{G2} + 0.12 P_{G2} Rs/hr. P_{G1} and P_{G2} are in MW. Compute optimum scheduling neglecting losses for a demand of 200 MW.

Or

(b) A power plant has 3 units with the following input output curves

$$Q_1 = 0.002 P_1^2 + 0.86 P_1 + 20 tons / hour$$

$$Q_2 = 0.004 P_2^2 + 1.08 P_2 + 20$$
 tons / hour

$$Q_3 = 0.0028 P_3^2 + 0.64 P_3 + 36 tons / hour$$

(16)

Fuel cost is Rs. 500 per ton. Maximum and minimum generation level for each unit is 120 MW and 36 MW. Find the optimum scheduling for a total load of 200 MW.

20. (a) With a neat diagram, explain the various components involved in computer control of power systems using SCADA. (16)

Or

- (b) (i) Discuss the main functions of EMS in detail (8)
 - (ii) Write short notes on state estimation of power systems. (8)