Reg. No. :					
100					1

Question Paper Code: 54022

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

Civil Engineering

15UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and Chemical Engineering)

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1.	The sufficient condition for (a) $ f(x)f''(x) > [f'(x)]$	•	f iteration method is (b) $ \phi'(x) > 1$		CO1- R
	(c) $ f(x)f''(x) < [f'(x)]$	2	(d) $ \emptyset'(x) < 1$		
2.	The condition for converg system of simultaneous alg		obi method for solving	a	CO1- R
	(a) $ A = 0$		(b) Orthogonal matrix		
	(c) $ A \neq 0$		(d) Diagonally domina	ant system	
3.	Newton's forward interpo value of y using a given va		• • • •	he	CO2- R
	(a) At the beginning of the	table	(b) At the middle of th	e table	
	(c) At the end of the table		(d) Far beyond the giv	en upper valu	e of 'x'
4.	If only two pair values Newton's forward formula		(y_1) are given then the	he	CO2- R
	(a) Linear interpolation for	rmula	(b) Non-linear interpol	lation formula	ı
	(c) Parabolic interpolation	formula	(d) Exponential polyno	omial	
5.	The process of numerical is called	integration of a fun	ction of a single variab	le	CO3- R
	(a) Trapezoidal rule	(b) Simpson's rule	(c) Cubature	(d) Quadrat	ure

A

6.	The order of error in the Tr	apezoidal rule is			CO3- R
	(a) O(h ⁴)	(b) $O(h^3)$	(c) $O(h^5)$	(d) $O(h^2)$	
7.	Runge-Kutta method of first	st order is same as			CO4- R
	(a) Euler's method		(b) Modified Euler	's method	
	(c) Taylor series method		(d) Milne's method	1	
8.	The number of prior values method is	s required to predict the	e next value in Milne'	S	CO4- R
	(a) 4	(b) 6	(c) 5	(d) 2	
9.	The equation $u_{xx} + u_{yy} =$	0 is of			CO5- R
	(a) Elliptic type		(b) Parabolic type		
	(c) Hyperbolic type		(d) Non homogene	ous type	
10.	The interval in which the is stable solution is	mplicit formula (Crank	- Nicholson) provide	S	CO5- R
	(a) $0 < \lambda \leq 1$	(b) $0 < \lambda \le 2$	(c) $1 < \lambda \leq 2$	(d) $0 < \lambda$	$\leq \frac{1}{2}$
		PART - B (5 x 2 = 1)	, ,		2
11.	Find the interval for a posit	tive root of the polynor	mial $x^3 - 2x + 5 = 0$. CC	01- App
12.	Find y (1) using Lagrange x: 0 1 3 y: 5 6 50	's interpolation formula	a from the given data	a: CC	02- App
13.		nt Gaussian quadrature	formula.	CC	03- App
14.				f second CC	94- App
15.	State Crank – Nicholson di	fference scheme to so	lve a parabolic equation	on. CC	95- R
		PART – C (5 x 16	= 80Marks)		
16.		g system of equations t = 5, $4x + 4y - 3z = 3$,	by Gauss elimination	CO1- App	(8)
	(ii) Solve the system of 28x+4y- z =32, Gauss-Seidel Meth	x+3y+10z=24, $2x+2$	17y+4z = 35 by	CO1- App	(8)
		Or			

- (b) (i) Find the positive root of $f(x) = 2x^3 3x 6 = 0$, by N-R method. CO1- App (8)
 - (ii) Determine the largest eigen value and the corresponding CO1- App (8) eigen vector of

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ -10 & -1 & 2 \end{bmatrix}$$
 by power method.

17. (a) (i) Find y at x = 43, by using Newton's forward interpolation CO2- App (8) formula from the following data,

X	40	50	60	70	80	90
У	184	204	226	250	276	304

(ii) The population of a town in the census is as given in the data. CO2- App (8)Estimate the population in the year 1996 using Newton's backward interpolation.

Year (x)	1961	1971	1981	1991	2001
Population	46	66	81	93	101
(in 000's)					

Or

(b) (i) Using Newton's divided difference formula, find values of CO2- App (8)
 f (2) from the following data.

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(ii) Find f (27) by using Lagrange's formula for the data given CO2- App (8) below.

X	14	17	31	35
f(x)	68.7	64.0	44.0	39.1

18. (a) (i) Find y' and y'' at x = 1.5 from the following table,

X	1.5	2.0	2.5	3.0	3.5	4.0
у	3.375	7.0	13.625	24.0	38.875	59

CO3- Ana (8)

(ii) Find $\int_{1.6}^{2.8} f(x) dx$ by Simpsons $(1/3)^{rd}$ rule from the CO3- Ana (8) following table.

				2.2			
f(x)	4.95	6.05	7.39	9.02	11.02	13.46	16.44
			•	•			

Or

(b) Evaluate

CO3- Ana (16)

 $\int_{0}^{1} \int_{0}^{1} e^{x+y} dx dy$ using the Trapezoidal and Simpson's rules with h = k = 0.5

19. (a) Solve CO4- App (16) $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2} \text{ given y}(0) = 1 \text{ at } x = 0.2 \text{ and } x = 0.3 \text{ using}$ Runge – Kutta method of 4th order.

Or

(b) (i) Find y(0.2) correct to 3 decimals given CO4- App (8)

$$\frac{dy}{dx} = 1 - 2xy, y(0) = 0 \text{ by using Taylor Series Method.}$$
(ii) Using Milne's method find y(2) given $y' = \frac{1}{2}(x + y)$ given CO4- App (8)
 $y(0) = 2, y(0.5) = 2.636, y(1) = 3.595 \text{ and } y(1.5) = 4.968.$

20. (a) Solve CO5- App (16)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, subject to
(i) $u(0,y) = 0$, $0 \le y \le 4$
(ii) $u(4,y) = 12 + y$, $0 \le y \le 4$
(iii) $u(x,0) = 3x$, $0 \le x \le 4$
(iv) $u(x,4) = x^2$, $0 \le x \le 4$ by dividing the square into 16 square meshes of side 1.

(b) Using Explicit scheme solve the wave equation

$$u_{\pi} = u_{xx}, 0 < x < 1, t > 0$$
, given $u(x, 0) = u_t(x, 0) = u(0, t) = 0$ and
 $u(1,t) = 100 \sin(\pi t)$. Compute u for 4 times steps with h = 0.25.
(16)

Or