A		Reg. No. :											
		Question Pape	er C	Cod	e: 5	430	4						
	B.E. /	B.Tech. DEGREE EX	AM	1IN/	ATIC)N, I	MAY	202	22				
		Fourth S	eme	ester									
		Electrical and Elect	roni	ics E	ngin	neerin	ng						
	15UE	E404- TRANSMISSI	ON	AN	D DI	ISTR	IBU	TIO	N				
		(Regulati	on 2	2015	5)								
Dura	ation: Three hours							Ma	ixim	um:	100	Mark	S
		Answer ALI	L Qı	uesti	ons								
		PART A - (10 x	: 1 =	= 10	Mar	ks)							
1.	The voltage level of p	primary distribution is										CO	1 - R
	(a) 132KV to 440KV	(b) 6.6KV to 11k	ΚV	(c)) 11k	KV to	5 33H	ΚV	(d)	400	√ to	11K	V
2.	Which of the following	ng system is one way p	owe	er tra	ansfe	er sys	stem					CO	1 - R
	(a) Radial system		(b) Ri	ng n	nain	syste	em					
	(c) Interconnected sys	stem	(0	l) No	one (of the	e abo	ve					
3.	Factors affecting core	ona										CO2	2- R
	(a) Line voltage	(b) Line current	(c	e) Ph	ase	volta	ge		(d) A	All o	f the	abov	/e.
4.	Skin effect is not asso	ociated with the follow	ing	one								CO	2- R
	(a) Frequency (b)	Diameter of the wire	(c	e) Sh	ape	of th	e wii	re	(d) S	Size	of th	e wii	e
5.	What is the distance of	covered for short transp	miss	sion	line							CO	3- R
	(a) Less than 50 km	(b) More than 50 km	(c) 5	0 km	to 1	50 k	m	(d)) Les	s tha	ın 60	km
6.	Which of the following	ng regulation is consid	ered	l to ł	be th	e bes	st					CO	3- R
	(a) 35%	(b) 5%	(c) 7	0%				(d) 9	95%			
7.	What is the forbidden	level of Insulator?										CO	4- R
	(a) Less than 3 eV	(b) 0.7 eV	(c) 0.	3 eV	7			(d) N	More	thar	n 4 e	V

8.	Guar	rd ring transmissi	on line			CO4- R
	(a) Iı	mproves power fa	actor	(b) Reduces earth capacitan	ce of the low	vest unit
	(c) R	Reduces transmiss	ion losses	(d) Improves regulation		
9.	Sag	the conductor tak	es the following form	n		CO5- R
	(a) S	$B = W L^2 / 2 T$	(b) W L / 8 D	(c) W L 2 / 8 T	(d) W L 2	/ 8 D
10.	If sag	g in an overhead	line increases tension	n in the line		CO5- R
	(a) Iı	ncreases	(b) Decreases	(c) Constant	(d) Zero	
			PART – B (5	x 2= 10 Marks)		
11.	State	e the advantages of	of interconnected sys	tems		CO1- R
12.	Wha	t is the need of T	ransposition?			CO2- R
13.	Drav	w the Phasor repre	esentation of Medium	n – Nominal T Transmission	Line?	CO3- R
14.	Drav	w the equivalent c	ircuit of a cable?			CO4- R
15.	Wha	t are the factors a	ffecting sag in a tran	smission line		CO5- R
			PART – C	(5 x 16= 80 Marks)		
16.	(a)	(i) Discuss vari HDVC link avail	ous types of HVD lable in Indian with r	C links. Mentions any one ating?	e CO1-U	(8)
		(ii) List out the n	nain components of a	a HVDC system	CO1- U	(8)

- Or
- (b) A 2 wire DC distributor AB is 300 metres long. It is fed at point CO1-U (16)
 A . The various loads and their positions are given below.

At point	Distance from	Concentrated
	A in metres	load in amperes
С	40	30
D	100	40
Е	150	100
F	250	50

If the maximum permissible voltage drop is not to exceed 10 V , find the cross sectional area of the distributor. Take $\rho = 1.78 \times 10^{-8} \Omega$ metres.

17. (a) (i) Build the expression for inductance of a three phase line with CO2- U (8) equilateral spacing

		(ii) Build the expression for inductance of a three phase Transposed conductors line	CO2- U	(8)
	(b)	(i) Build the expression for capacitance of a three phase line with	CO2- U	(8)
		(ii) Build the expression for capacitance of a three phase line with unequal spacing (Transposed conductors)	CO2- U	(8)
18.	(a)	A 3 phase,50 Hz 100 Km transmission line has the following constant Resistance / phase/ km = 0.1 Ω Reactance / phase / km = 0.2 Ω Capacitive Susceptance / phase / km = 0.04 * 10 ⁻⁴ mho If the line supplies a load of 10,000 KW at 0.8 p.f. lagging at 66 KV at the receiving end. Calculate the following by using nominal T method. (i) Sending end current (ii) Line Value of sending end voltage (iii) Sending end power factor (iv)Regulation and Transmission efficiency	CO3- U	(16)
	(b)	Explain the following methods for Medium Transmission lines (i) End Condenser method	CO3- U	(8)
		(ii) Nominal T method (or) middle condenser method	CO3- U	(8)
19.	(a)	The self capacitance of each unit in a string of three suspension insulators is C.The shunting capacitance of the connecting metal work of each insulator to earth is 0.15 C while for line is 0.1 C. Calculate (i) the voltage across each insulator as a percentage of the line voltage to earth and (ii) string efficiency. Or	CO4- U	(16)
	(b)	Discuss briefly on the following Insulator:	CO4- U	(4)
		(i) Pin Insulator	CO4- U	(6)
		(ii) Suspension Insulator(iii) Strain Insulator	CO4- U	(6)
20.	(a)	Derive the expressions for sag and conductor length under bad weather conditions. Assume Shape of overhead line is a parabola.	CO5- U	(16)

Ōr

(b) Explain the following concepts with the help of diagra
--

(i) Peterson coil groundingCO5- U(8)(ii) Reactance groundingCO5- U(8)