C		Reg. No. :			
Question Paper Code: 53402					
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022					
Third Semester					
Electronics and Communication Engineering					
15UEC302 - DIGITAL ELECTRONICS AND DESIGN					
(Regulation 2015)					
Duration: Three hours Maximum: 100 Marks Answer ALL Questions Maximum: 100 Marks					
PART A - $(5 \times 1 = 5 \text{ Marks})$					
1.					
	(a) 1	(b) 2	(c) 4	(d) 8	
2.	A full adder can be constructed out of			CO2- R	
	(a) Two half adders		(b) Two half adders and a OR gate		
	(c) Two half adders and a NOT gate (d) Two half adders and a AND gate			s and a AND gate	
3.	The number of states a ring counter with 5 flip flops will have is CO3- R				
	(a) 5	(b)10	(c) 32	(d) None of the above	
4.	In Moore models, output is function of only CO4- I				
	(a) Present state	(b) Input state	(c) Next state	(d) Both (A) and (B)	
5.	Transistor–transistor logic (TTL) is a class of digital circuits built from CO5- R				
	(a) JFET		(b) Resistors	(b) Resistors	
	(c) Bipolar Junction Transistors (d) Bipolar Junction Transistors a			n Transistors and Resistors	
PART - B (5 x 3 = 15 Marks)					
6.	State the drawbacks of K-map method.			CO1- R	
7.	Compare decoder and demultiplexer.			CO2- R	
8.	Differentiate flip-flop from latches.			CO3- R	

- 9. Define hazards in asynchronous sequential circuits.
- 10. What is the difference between programmable array logic (PAL) and CO5-R programmable logic array (PLA)?

11. (a) Simplify the following Boolean function CO1- App (16) $f(W, X,Y,Z)=\sum m(2,6,8,9,10,11,14,15)$ using Quine-McClukey tabular method.

Or

- (b) Find a minimal sum of products representation for CO1- App (16) $F(A,B,C,D) = \sum_{m}(1,3,7,11,15) + \sum_{m}d(0,2,5)$ using karnaugh method. Draw the circuit of the minimal expression using only NAND gates.
- 12. (a) Design a 4 bit magnitude comparator and draw its logic diagram. CO2- App (16) Or
 - (b) Explain the design of BCD adder. CO2- App (16)
- 13. (a) (i) Draw the logic diagram of a 4-bit universal shift register and CO3-U (8) explain its operation.

(ii) Explain the working of a Master - slave J-K flip-flop with a CO3-U (8) neat logic Diagram.

Or

- (b) Design and explain the working of synchronous MOD-6 counter. CO3- U (16)
- 14. (a) Design a sequence detector that produces an output '1' whenever CO4-U (16) the non-overlapping sequence 1011 is detected.

Or

- (b) Explain in detail about problems in asynchronous sequential CO4-U (16) circuits.
- 15. (a) Implement the following two Boolean functions with a CO5-U (16) programmable logic array (PLA) $F_1(A,B,C) = \sum m(0,1,3,4)$ $F_2(A,B,C) = \sum m(1,2,3,4,5)$

Or

(b) (i) Discuss about FPGA in detail.
(ii) Explain the operation of a TTL 3-input NAND gate with a neat CO5- U (8) circuit diagram.

CO4- R