4	-	7
ŧ		

Reg. No.:					

CO1- App

Question Paper Code: 96421

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

Electronics and Electrical Engineering

19UEC621- Digital Signal Processing for Electrical Engineers

		(Regulation 2019)				
Dur	ation: Three h	ours		Maximum: 100 Marks			
		Answ	er ALL Questions				
		PART A	$x - (5 \times 1 = 5 \text{ Marks})$				
1.	y(n) = x(n-2)	+ x(2-n) is		CO1-App			
	(a) Causal	(b) Time varia	ant (c) Non Causal	(d) All of the mentioned			
2.	The ROC of	a causal signal is the	of a circle of same radiu	s r. CO1-U			
	(a) interior	(b) exterior	(c) both a and b	(b) none of these			
3.	Find the DFT	of $y(n) = \{1,1,0,0\}$		CO3-App			
	(a) $y(n) = \{-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, $,3-3i,0,3+3i}	(b) $y(n) = \{2, 1+i, 0\}$),1-i }			
	(c) $y(n) = \{2, 1\}$	- i,0,1+i}	(d) $y(n) = \{-2,3+3\}$	(d) $y(n) = \{-2,3+3i,0,3-3i\}$			
4.	A direct partial-fraction expansion of the transfer function in Z leads to CO4- R						
	(a) The parall	lel form II structure	(b) The parallel fo	rm I structure			
	(c) Cascaded	structure	(d) None of the ab	(d) None of the above			
5.		*	re, which functional unit is register to and from contro	CO5- U			
	(a) L2	(b) M2	(c) S2	(d) D2			
		PART –	B $(5 \times 3 = 15 \text{ Marks})$				

6. A discrete-time signal x(n) is defined as

 $x(n) = \{1 + n/3, -3 \le n \le -1$ 1, $0 \le n \le 3$ and 0, elsewhere

Draw x(n) and its inverse.

Convolve of the following using z-Transform 7. CO2- App $X(z) = 1 + 2z^{-1} + z^{-2}$ and $H(z) = 1 + z^{-1} + z^{-2}$ Compare DFT and DTFT. 8. CO₃- U 9. Define Gibbs Phenomenon. CO4-U 10. Define pipelining. CO5-U $PART - C (5 \times 16 = 80 \text{ Marks})$ (a) With neat sketch explain the classification of signals. CO1-U 11. (16)Or (b) Determine the following systems are linear, stability and time CO1- App (16)invariance of the system. (i) y[n]=x[2n](ii) $y[n] = \sin x[n]$ (a) Compute the following $Z[\sin(n\pi/2)]$ and $Z[-5^n u(n)]$. CO2- App 12. (16)(b) Find $Z^{-1}[(3z^2)/(z^2+7z+10)]$. Using convolution method. CO2- App (16)13. (a) By means of the DFT and IDFT, determine the response at the CO₃- App (16)FIR filter with the impulse response h(n) = [1,2,3] and the input sequence x(n) = [1,2,2,1]. Or (b) Find X(k) using radix-2 DIT-FFT algorithm, when CO₃- App (16) $x(n) = \{2,1,2,1,2,1,2,1\}$ Design a linear phase FIR Low pass filter using hamming CO4-App 14. (a) (16)window with cut off $\omega_c = 0.8\pi$ rad/sample by taking N=7 samples Or (b) Design a butterworth digital IIR filter using Bilinear Transform CO4- App (16)by taking T= 1 sec to satisfy the following specification $0.6 \le |H(w)| \le 1$ for $0 \le w \le 0.35\pi$ $| H(w) | \le 0.1 \text{ for } 0.7\pi \le w \le \pi$ CO5-U 15. (a) Describe the function of on chip peripherals of TMS 320 C54 (16)processor. Or (b) What are the different buses of TMS 320 C54 processor? Give CO5-U (16)their functions.