•
Λ
$\boldsymbol{\Box}$

Reg. No.:					

(b) h (n) symmetric and 'M' even

(d) h (n) anti-symmetric and 'M' even

Question Paper Code: 56421

B.E./B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

Electrical and Electronics Engineering

15UEC621 - SIGNAL PROCESSING

(Common to Electronics and Instrumentation Engineering)

		(Regulation	on 2015)				
Dur	ration: Three hours		N	Iaximum: 100 Marks			
		Answer ALI	Questions				
		PART A - (10 x	1 = 10 Marks)				
1.	For a system to be o	causal		CO1- R			
	(a) $h(n) \neq 0$ for $n < 0$	(b) $h(n) = 0$ for $n < 0$	(c) $h(n) = 0$ for $n \ge 0$	$(d)\sum_{k=-\infty}^{\infty} h(n) <\infty$			
2.	Sampling theorem:			CO1- R			
	(a) fm <fs< td=""><td>(b) fs>fm</td><td>(c) $fs \ge 2fm$</td><td>(d) $fs=2fm$</td></fs<>	(b) fs>fm	(c) $fs \ge 2fm$	(d) $fs=2fm$			
3.	For what kind of sig	gnals one sided z-transfo	rm is unique?	CO2- R			
	(a) All signals	(b) Anti-causal signal	(c) Causal signal	(d) None of the above			
4.	The z transform is a	1,		CO2- R			
	(a) finite series		(b) infinite power seri	es			
	(c) geometric series	K	(d) both a and c				
5.	The direct evaluation	on DFT requires	complex multiplications	CO3- R			
	(a) N(N-1)	(b) N^2	(c) N(N+1)	$(d) \frac{N (N-1)}{2}$			
6.	For a decimation-in-time FFT algorithm, which of the following is true?						
	(a) Both input and o	output are in order	(b) Both input and output are shuffled				
	(c) Input is shuffled	(d) Input is in order a	nd output is shuffled				
7.	Which of the follow pass filter	wing is not suitable eithe	er as low pass filter or a	High CO4- R			

(a) h (n) symmetric and 'M' odd

(c) h (n) anti-symmetric and 'M' odd

8.	In which window sequence, the width of the main-lobe can be adjusted by varying the length N of the window?						
	(a)]	Hamming	(b) Hanning	(c) Bartlett	(d) Kaiser		
9.	Size	e of the ALU o	CO5- R	CO5- R			
	(a) 8	8-bit	(b)16-bit	(c) 40-bit	(d) 32-bit		
10.	The	addressing m	ode which makes use o	of in-direction pointers is	CO5- R		
	(a) l	Indirect addres	ssing mode	(b) 5 Index addressing m	ode and 7		
	(c)]	Relative addre	ssing mode	(d) Offset addressing mo	de		
			PART – B ($(5 \times 2 = 10 \text{ Marks})$			
11.	Stat	e sampling the	eorem.		CO1- R		
12.	2. Determine the discrete time Fourier transform of the sequence					CO2- R	
	x (n	$() = \{1,-1,1,-1\}$	·.				
13.	If D	FT[x(n)] = X	CO3- R				
14.	Giv	CO4	CO4- R				
15.	Mei	CO5- R					
			PART – C	C (5 x 16= 80 Marks)			
16.	(a)		he following systems, nt or time invariant	determine whether the system	CO1- App	(16)	
		(i) $y(n) = x$ (ii) (ii) $y(n)$					
		(iii) $y(n) = x$	$(n) + n \times (n+1)$				
		(iv) $y(n) = cc$	os $[x(n)]$				
			Or				
	(b)	(i) Find when	•	$\cos (10 t+1) - \sin(4t-1) is$	CO1- App	(8)	
		(ii) Determin x(n)=sin(s are energy or power signals	CO1- App	(8)	
17.	(a)	(i) State and	prove the convolution	theorem of Z – transform.	CO2- App	(8)	
		(ii) Find the	inverse Z – transform o	of $X(z) = \frac{z^3 + z^2}{(z-1)(z-3)}$	CO2- App	(8)	

Or

	(b)	(i) Determine the Z transform and ROC of the sequence	CO2- App	(8)
		$x(n) = an cos((\omega n)u(n).$		
		(ii) Evaluate the system function of the discrete time system described by the difference equation. $y(n) = 0.5y(n-1)+x(n)$.	CO2- App	(8)
18.	(a)	Compute DFT using DIT-FFT algorithm	CO3- App	(16)
		$X(k) = \{0.5, 0.5, 0.5, 0.5, 1, 1, -1, -1\}$		
		Or		
	(b)	Compute 8-point DFT of the following sequence using DIF algorithm.	CO3- App	(16)
		x(n) = 1 for 0 < n < 7		
		=0 for otherwise		
19.	(a)	Design a second order digital low pass Butterworth filter with a cut-off frequency 3.4 KHz at a sampling rate of 8 KHz using bilinear transformation.	CO4- App	(16)
		Or		
	(b)	Design a digital FIR band pass filter with lower cut off frequency 2000Hz and upper cut off frequency 3200Hz using Hamming window of length N=7.Sampling rate is 10000Hz.	CO4- App	(16)
20.	(a)	Explain various addressing modes of a digital signal processor.	CO5- U	(16)
		Or		

(b) Draw the functional diagram of a digital signal processor and CO5- U

explain.

(16)