A	Reg. No. :						
Question Paper Code: U2P08							
B.E./B.Tech. DEGREE EXAMINATION, MAY 2022							
Second Semester							
	Electronics and Communication Engineering						
21UPH208- Electromagnetic Theory							
(Regulations 2021)							
Dura	ation: Three hours Maximum: 100 Mark	ζS					
	Answer ALL Questions						
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$							
1.	The metal having the lowest temperature coefficient of resistance is C	01 - U					
	(a) Gold (b) Copper (c) Aluminium (d) Canthal						
2.	Which material is used for the manufacture of ground wire? C	01 - U					
	(a) Aluminium (b) Galvanised steel (c) Cast iron (d) Stainless ste	el.					
3.	The potential inside a charged hollow sphere is C	01 - U					
	(a) Same as that on the surface (b) Zero						
	(c) Less than that on the surface (d) None of these						
4.	For a charge Q1, the effect of charge Q2 on Q1 will be C	01 - U					
	(a) $F1 = F2$ (b) $F1 = -F2$ (c) $F1 = F2 = 0$ (d) $F1$ and $F2$ are not equal						
5.	What is the relationship between magnetic field strength and current C density?	01 - U					
	(a) $\nabla H = J$ (b) $\nabla J = H$ (c) $\nabla \times H = J$ (d) $\nabla \times J = H$						
6.	Magnetic flux will be if the surface area vector of a surface is C perpendicular to the magnetic field.	01 - U					
	(a) Zero (b) Unity (c) Close to maximum (d) Maximum						
7.	is a type of photo detector, which can convert optical signals C into electrical signals	01 - U					
	(a) PIN diode (b) Avalanche diode (c) zener diode (d) schottky diod	le					

8.	In photo diode the carriers are generated in the						CO1-U	
	(a) I	Pregion (b)d	epletion region	(c)N	region	(d) terminal o	f the diode	
9.	A material with one dimension in Nano range and the other two CO1 dimensions are large is called							CO1-U
	(a) r	nicro-material	(b)quantum wi	re	(c)quantum	n well (c	l) quantum d	ot
10.	The	size of atoms is n	early					CO1-U
	(a) ().01 nm	(b)0.1 nm		(c)1 nm	(0	l) 10 nm	
			PART –	B (5 x	2= 10Marks)		
11.	Give	e any two postulat	tes of classical fr	ee elec	tron theory.			CO1-U
12.	Exp	lain Coulomb lav	vs of forces					CO1-U
13.	Magnetic field intensity of a paramagnetic material is 10^4 ampere/meter. At cO3-App room temperature its susceptibility is 3.7×10^{-3} . Calculate the magnetization of the material.							
14.	Wha	at is solar cell?						CO1-U
15.	Wha	at are the drawbac	ks of QD lasers?	2				CO1-U
			PART	– C (5	x 16= 80Ma	urks)		
16.	(a)	Deduce mathem thermal conduct Wiedemann-Fran	ivity of a cond nz law	ucting		•		(16)
	(b)	Explain density of allowed states	of states and arri		-	or the number	CO1-U	(16)
17.	(a)	Derive the differ and Laplace equ	ations.	auss's Or	law. Also de	erive Poisson's	s CO2-U	(16)
	(b)	Explain electric			ctric field		CO2-U	(16)
18.	(a)	Derive the difference electrostatics		ntegral Or	forms of	Gauss law in	n CO1-U	(16)
	(b)	The magnetic fie magnetic suscep magnetic flux de	eld strength of co tibility of copper	opper is r is -0.8	$3 \ge 10^{-5}$, calc		CO6-Ana	(16)

19.	(a)	Describe the construction and working of photodiode	CO1-U	(16)
		Or		
	(b)	Explain the construction and working of Solar cell.	CO1-U	(16)
20.	(a)	Describe construction and working of single electron transistor.	CO1-U	(16)
		Or		
	(b)	Describe principle, construction and working of quantum dot laser	CO1-U	(16)

U2P08