A		Reg. No. :						
		Question Pap	er Code: 94022					
	B.1	E./B.Tech. DEGREE	EXAMINATION, MA	AY 2022				
		Four	th Semester					
		Electronics and Co	mmunication Engineer	ring				
		19UMA422 - Pi	robability and Statistics	5				
		(Regu	ulations 2019)					
Dur	ation: Three hours			Maximum: 100) Marks			
		Answer	ALL Questions					
		PART A - (10 x 1 = 10 Marks)					
1.	If A and B are indeper	ndent events then P(A	(B) =		CO6-U			
	(a) 0	(b)P (A). P(B)	(c)P(A) + P(B)	(d) P(A) -	- P(B)			
2.	If A and B are mutually exclusive events then $P(A \cup B) = CO6$ -							
	(a) 0	(b)) $P(A) - P(B)$	(c) P (A) . P(B)	(d)P (A) -	+ P(B)			
3.	Large sample size is				CO6-U			
	(a) 30	(b) >30	(c) < 30	(d) none of	the above			
4.	The degrees of freed	om for the sample size	ze n= 25 in t test is		CO6-U			
	(a) 20	(b) 22	(c) 24	(d)	26			
5.	Choose the correctio	n factor			CO6- U			
	(a) T^2N	(b) T/N	(c) T^2/N	(d) TN				
6.	SSE for one way des	sign is			CO6-U			
	(a) 0	(b) TSS-SSC	(c) TSS-SSC-SSR	(d) TSS-SSC-	SSR-SSK			
7.		ess {X(t)} with mea en the Variance of th	in has Auto correlation e process is	n function	CO4-App			
	(a) 16	(b)25	(c) 6	(d)	9			
8.	Autocorrelation func	ction is maximum at	$\tau =$		CO6-U			
	(a) 0	(b) 1	(c) -1	(d)	∞			

9. The system is said to be stable if

(a)
$$\int_{-\infty}^{\infty} h(t) dt < \infty$$
 (b) $\int_{-\infty}^{\infty} h(t) dt > \infty$ (c) $\int_{-\infty}^{\infty} h(t) dt > 0$ (d) None of the above

10. If
$$\mu_x = 0$$
 then find μ_y CO6-U(a) 1(b)0(c) ∞ (d) 10PART – B (5 x 2= 10Marks)11. A continuous random variable has the probability density function is given by
 $f(x) = Kx (1 - x), 0 < x < 1$, Compute the value of the constant 'K'.CO1-App12. A sample of size 10 has mean 58, standard deviation 18.4 and population mean
50, Compute the calculated value of 't' distribution.CO2-App13. What are the basic principles in the design of experiment?CO6-U14. State any two properties of an auto correlation functionCO6-U15. Calculate the value of the system transfer function, if the input of the system with
impulse response $h(t) = e^{-\alpha t} U(t)$.CO5-AppPART – C (5 x 16= 80Marks)

16. (a) (i) Obtain the Correlation coefficient for the following heights (in CO1-App (8) inches) of fathers X and their sons Y.

Х	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

(ii) The number of monthly breakdowns of a computer is a R.V. CO1-App (8) having a Poisson distribution with mean equal to 1.8. Find the Probability that his computer will function for a month (a)Without a breakdown (b) With only one breakdown (c) With at least one breakdown

Or

(b) (i) In a large consignment of electric bulbs 10 % are defective. A CO1-App (8)random sample 20 bulbs are taken for inspection. Find the probability that (i) all are good bulbs (ii) exactly three defective bulbs.

(ii) If
$$f(x) = \begin{cases} \frac{k}{1+x^2}, -\infty < x < \infty \\ o, elsewhere \end{cases}$$
 is the Probability Density (8)

Function of a Random variable X,

(i) Find K (ii) distribution function of F(x)

CO6-U

CO6-U

17. (a) Two researchers A and B adopted different techniques while rating CO2-App (16) the student's level. Identify the Sampling distribution; Can you say that the techniques adopted by them are significant?

Researchers	Below Average	Average	Above Average	Genius	Total
А	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

(b) Two independent samples of sizes 9 and 7 from a normal population CO2 -Ana (16) had the following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample	16	19	13	16	18	13	15		
II									

Identify the sampling distribution, Do the estimates of the population variance differ significantly.

18. (a) The following table shows the lives in hours of four brands of electric CO3-Ana (16) lamps.

Brand	161	161	165	168	170	172	180	
Brand	158	164	164	170	175			
Brand	146	155	160	162	164	166	174	182
Brand	151	152	153	157	160	168		

Perform an analysis of variance test the homogeneity of the mean lives of the four brands of lamps.

Or

(b) Analyze the following of Latin square design experiment,. CO3-Ana (16)

A (12)	D (20)	C (16)	B (10)
D (18)	A (14)	B (11)	C (14)
B (12)	C (15)	D (19)	A (13)
C (16)	B (11)	A (15)	D (20)

The letters A,B,C,D denote the treatments and the figures in brackets denote the observations,

19. (a) (i) If the auto correlation function of the random binary transmission CO4-App (8) is given by $R_{XX}(\tau) = \begin{cases} 1 - |\tau| ; |\tau| \le 1 \\ 0 ; |\tau| \ge 1 \end{cases}$ Compute the Power spectral density function. (ii) Using the properties of auto correlation function, compute the CO4-App (8) Mean, Mean Square value and Variance of $R_{xx}(\tau) = \frac{25\tau^2 + 36}{4 + 6.25\tau^2}$ Or (b) If the power spectral density of a continuous process is CO4-App (16)

$$S_{xx}(\omega) = \frac{10 \omega^2 + 35}{(\omega^2 + 4)(\omega^2 + 9)},$$
 Compute the auto correlation function and the mean square value of the process

20. (a) A random process X (t) having the autocorrelation function CO5-App (16) $R_{xx(\tau) = P e^{-\alpha |\tau|}}$ Where Pand α are constants applied to the input of the system with impulse response $h(t) = e^{-bt}U(t)$ where b is a constant. Compute the autocorrelation of the output Y (t).

Or

(b) If X (t) is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u) X(t-u) du \text{ then}$ (i).R_{XY}(τ) = R_{XX}(τ)* h(τ) (ii).R_{YY}(τ) = R_{XY}(τ)* h(- τ) (16)

(iii).S_{XY}(
$$\omega$$
) = S_{XX}(ω) * H(ω) (iv).S_{YY}(ω) = S_{XX}(ω) * $|H(\omega)|^2$