4		٦
4	1	١,
u	l	

Reg. No.:					

Question Paper Code: 94404

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

Electronics and Communication Engineering

		19UEC4	04– Linear Integrated (Circuits	
			(Regulations 2019)		
Dur	ation: Three hou	ırs		Maximun	n: 100 Marks
		An	swer ALL Questions		
		PAR	$\Gamma A - (5 \times 1 = 5 \text{ Marks})$		
1.	The output of a is	ı particular Op-amp	increases 8V in 12μs.	The slew rate	CO2-App
	(a) 90 v/µs	(b) $0.67 \text{ v/}\mu\text{s}$	(c) $1.5 \text{ v/}\mu\text{s}$	(d) 2.5	v/μs
2.		ollowing functions of Corm continuously v	loes the antilog comput with log-amps?	ation	CO1-U
	(a) In(x)	(b) $log(x)$	(c) Sinh(x)	(d) All of the	mentioned
3.	In a D-A conv	•	veighted resistor, a des	ired step size	CO1-U
	(a) Selecting pr	oper value of V _{FS}	(b) Selecting proper v	alue of R	
	(c) Selecting pr	oper value of R _F	(d) All of the mention	ed	
4.	How many coraddition to refe	*	ent in analog to digital	l converter in	CO1- U
	(a) Three	(b) Two	(c) One	(d) None of the me	ntioned
5.		multivibrator has I ate the value of C?	$R = 120k\Omega$ and the tire	me delay T =	CO2- App
	(a) $0.9 \mu F$	(b) 1.32μF	(c) 7.5μF	(d) 2.49	μF
		PART	$T - B (5 \times 3 = 15 \text{ Marks})$)	

6. A differential amplifier has a differential voltage gain of 2000 and common CO2- App mode gain of 0.2. Determine CMRR in dB.

7. Differentiate Logarithmic and antilogarithmic amplifiers.

CO1-U

8. Define resolution of a data converter.

CO1- U

9. Differentiate Schmitt trigger and Comparator.

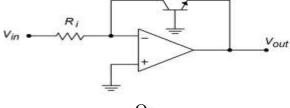
CO1-U

10. The basic step of a 9 bit DAC is 10.3 mV. If 000000000 represents 0 Volts, CO2-App what is the output for an input of 101101111.

 $PART - C (5 \times 16 = 80 \text{ Marks})$

11. (a) Explain the AC characteristics of operational amplifier. CO1- U (16)

Or


- (b) Explain the DC characteristics of operational amplifier. CO1- U (16)
- 12. (a) Explain the working of an instrumentation amplifier with a neat CO1- U diagram. (16)

Or

- (b) Explain in detail about Integrator and Differentiator with an OP- CO1- U (16) AMP
- 13. (a) Discuss in detail about the successive approximation ADC with CO1- U neat diagram. (16)

Or

- (b) Discuss in detail about the R-2R ladder type DAC with neat CO1- U diagram. (16)
- 14. (a) Design a 8 to 3 bit output Flash type ADC with neat diagram. CO3- Ana (16)
 Or
 - (b) Design a 6 bit the successive approximation ADC with neat CO3-Ana (16) diagram.
- 15. (a) Determine the output voltage for the circuit of Figure given CO3-App below, if Vin = 1 V, $Ri = 50 \text{ k}\Omega$, and Is = 30 nA. Assume T = 300 kelvin. Also determine the output for inputs of 0.5 V and 2 V with a neat diagram

Or

(b) Design a Astable multivibrator using IC 555 with its frequency of CO3- Ana oscillation is 1 KHz. (16)