С		Reg. No. :												
	Question Paper Code: 54405													
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022														
Fourth Semester														
Electronics and Communication Engineering														
15UEC405 - DIGITAL COMMUNICATION														
(Regulation 2015)														
Dura	Ouration: Three hours Maximum: 100 Marl													
Answer ALL Questions														
PART A - $(5 \times 1 = 5 \text{ Marks})$														
1.	The channel capacity	The channel capacity of mutual information is									CO1- I			
	(a) C=supI(X;Y)	(b) C=Blog(1+S/N)	(c) C	=Blr	n(S/N	()	(d) C	=sup	B(X	(Y)			
2.	The maximum error correction of hamming code is.									CO2- I				
	(a) d≤k+1) $d \le k+1$ (b) $d \ge 2k+1$ (c) $d = k+1$ (d) none of							of 1	hese				
3.	Which type is used a	Which type is used and preferred in digital logic circuits								CO3-1				
	(a) NRZ-M	NRZ-M (b) NRZ-L (c) Bipolar RZ (d) RZ-A						Z-Al	MI					
4.	The matched filter is a baseband signal receiver, which works in presence of.									CO4-]				
	(a) Thermal noise (b) white Gaussian noise (c) Pepper noise (d) None								one	of these				
5.	The multiple symbols are transmitted in one frequency hop is called as CO5- R													
	(a) DSSS) DSSS (b) Frequency hopping												
	(c) Slow frequency hopping (d) Fast frequency hopping													
		PART - B (5 x)			-	5	11	0						
6.	Define Entropy		_ 10 1		~)						CO1- I			
7.	State the advantages of convolutional codes?								CO2-1					
8.	A signal is sampled at Nyquist rate of 6 KHz and is quantized using 8 bit uniform quantizer. Assuming SNR for a sinusoidal signal, calculate the bit rate, SNR and BW.								CO3- 1					
9.	Why Non coherent detection is preferred over Coherent detection?									CO4- 1				
10.	Define processing gain and jamming margin									CO5-1				
PART – C (5 x 16= 80 Marks)														

11.	(a)	Apply Shannon-Fano encoding procedure to find the code word for the messages A1, A2, A3, A4 and A5 with respective probabilities 0.35, 0.25, 0.20, 0.15 and 0.05. Also find the redundancy of the code	CO1- App	(16)
		Or		
	(b)	Use the LZW algorithm to compress the string BABAABAAA. Also comment on the code efficiency. Write the advantages of LZW coding over Huffman coding.	CO1- App	(16)
12.	(a)	For a systematic linear block code, the three parity check digits P1, P2,P3 are given by $P_{k,n-k} = [101\ 111\ 110\ 011]$ (i) Construct generated matrix.	CO2- App	(16)
		(ii) Assess the t code generated by the matrix.		
		(iii) Determine error correcting capacity.		
		(iv) Decode the received words with an example		
		Or		
	(b)	A convolutional code is described by $g1=[1 \ 0 \ 0]$, $g2=[1 \ 0 \ 1]$, $g3=[1 \ 1 \ 1]$	CO2- App	(16)
		(i) Build the encoder corresponding to the code.		
		(ii) Develop the state transition diagram for this code.		
		(iii) Draw the trellis diagram.		
		(iv) Estimate the transfer function		
13.	(a)	For the sequence 10111001, sketch the waveform supporting the	CO3- U	(16)
		following data formats.		
		(i) Unipolar RZ(ii) Polar NRZ		
		(iii) Alternate mark inversion		
		(iv) Split Phase Manchester coding.		
		Draw the corresponding spectrum of the above formats and explain.		
		Or		
	(b)	Outline the process of sampling and how the message can be reconstructed from its samples. Also illustrate the effect of	CO3- U	(16)

aliasing with neat sketch

14. (a) Discuss the transmitter, receiver and signal space diagram of CO4- Ana (16) QPSK and describe how it produces the original sequence with the minimum probability of error with neat sketch

Or

- (b) Summarize the transmitter, receiver and generation of non- CO4- Ana (16) coherent version of PSK with neat sketch and obtain the probability of error
- 15. (a) Discuss about the Direct Sequence Spread Spectrum Techniques CO5-U (16) with necessary diagrams and write its applications

(b) Explain the different types of synchronization techniques with CO5-U (16) necessary diagrams.

Or