Reg. No. :

Question Paper Code: 44403

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

Electronics and Communication Engineering

14UEC403 - ELECTROMAGNETIC FIELDS

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1. A field F is said to be SOLENOIDAL if

(a) CURL F=0 (b) DIV F=0 (c) $\nabla^2 F = 0$ (d) $\int F dl = 0$

- Two Positive charges Q Coulomb each are placed at points (0, 0, 0) and (2, 2, 0),while two negative charges Q Coulomb each in magnitude are placed at points (0, 2, 0) and (2, 0, 0). The electric field at point (1, 1, 0) is
 - (a) Zero (b) $\frac{Q}{8\pi\epsilon0}$ (c) $\frac{Q}{4\pi\epsilon0}$ (d) $\frac{Q}{16\pi\epsilon0}$

3. The Magnetic field at any point on the axis of a current carrying circular coil will be

- (a) Perpendicular to the axis(b) Parallel to the axis(c) At an angle of 45 degree with the axis(d) Zero
- 4. The Magnetic field at any point on the axis of a current carrying circular coil will be

(a) Perpendicular to the axis	(b) Parallel to the axis
(c) At an angle of 45 degree with the axis	(d) Zero

- 5. Point form of Ohm's law is
 - (a) $\vec{E} = \sigma \vec{J}$ (b) $\vec{J} = \sigma \vec{E}$ (c) $\vec{E} = \vec{J}$ (d) $\vec{E} = \frac{\sigma}{\vec{I}}$

6.	In a dielectric-conductor boundary, the tangential component of electric field is				
	(a) E _i	(b) 2E _i	(c) 0	(d) Infinity	
7.	The Coefficient of a	coupling between two	coils		
	 (a) Orientation of the coils (b) Current (c) Number of turns on the two coils current (d) Self-inductance of the two 		ictance of the two coils		
8. Give the equation of power flow in coaxial cable					
	(a) Poynting Ve (c) Radial Vect	ector or	(b) Scalar Vecto(d) none of these	r	
9.	In a good conductor	E/H ratio is			
	(a) Real(b) Imaginary(c) Has a phase(d) Has no relev	of 45 degree /ance,(i.e) E is indepe	endent of H		
10.	. Skin depth is proportional to				
	(a) Frequency	(b) permeability	(c) $\sqrt{\sigma}$	(d) $1/\sqrt{\sigma}$	
		PART - B (5	x 2 = 10 Marks)		
11.	List the principles of	f superposition.			
12.	Define Biot-Savart	Law.			
13.	Define mutual indu	ctance.			
14.	State Poynting theo	rem.			
15.	Mention the property	ties of uniform plane	wave.		
		PART - C (5 2	x 16 = 80 Marks)		
16.	(a) Determine the uniform density	electric field intensity ρ_L in air.	v of an infinitely long	g, straight, line charge of a (16)	
			Or		

(b) State and prove Gauss law with applications.

(16)

17. (a) Find the magnetic flux density around infinitely long straight conductor using Bio-Savart law. (16)

Or

(b) Prove Ampere's circuital law. Derive an expression for vector magnetic potential.

(16)

18. (a) A cylindrical capacitor consists of an inner conductor of radius 'a' and an outer conductor whose inner radius is 'b'. The space between the conductor is filled with a dielectric of permittivity ε , and the length of the capacitor is L. Determine the capacitance of this capacitor. (16)

Or

- (b) (i) Obtain an expression for capacitance of a parallel plate capacitor. (8)
 - (ii) Explain the following (a) magnetization (b) permeability. (8)
- 19. (a) Derive the Poynting vector from Maxwell's equations and explain power of flow.

(16)

Or

- (b) (i) Explain about power flow in a coaxial cable. (10)
 - (ii) Find the displacement current at t = 0 passing in an aluminium conductor of circular cross section having a total resistance of 0.15 Ω and voltage of 100 sin (10⁶ πt) volts across it. Given $\sigma = 3.5 \times 10^7$ δ/m and $\varepsilon_r = 1$. (6)
- 20. (a) Define Brewster angle. Derive the wave equation in free space condition. (16)

Or

(b) Derive the transmission and reflection coefficient for the electromagnetic waves when incident normally on perfect dielectric. (16)

#