С		Reg. No. :]
		Question Pa	per Co	ode: 9	954	01						
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022												
Fifth Semester Electronics and Communication Engineering												
		(Regulat	tion 201	9)								
Duration: Three hours							Ma	Maximum: 100 Marks				
		Answer AL	L Quest	ions								
		PART A - (5	x 1 = 5 1	Marks)							
1.	In an N point DFT of a finite duration sequence x(n) of length, the value of N should be such that							CO	1 - U			
	(a) N> L	(b) N≥ L	(c)	N <l< td=""><td></td><td></td><td></td><td>(d)</td><td>) N≤</td><td>L</td><td></td><td></td></l<>				(d)) N≤	L		
2.	The poles of Butterwor	th filter lies	in	s-plan	ie						CO	1- U
	(a) Sphere	(b) Circle	(c)	Ellips	e			(d)) Par	abol	a	
3.	The frequency response	e of a digital filter is	periodi	c in th	e rar	nge					CO	1- U
	(a) $0 < \omega < 2\pi$			(b) - $\pi < \omega < \pi$								
	(c) $0 < \omega < \pi$			(d) $0 < \omega < 2\pi$ or - $\pi < \omega < \pi$								
4.	The Finite word length	effects are due to,									CO	1 - U
	(a) Quantization of input			(b) Quantization of coefficients								
	(c) Quantization of product			(d) All the above								
5.	The total memory space of TMS320C5x family of processors is									CO	1- U	
	(a) 224k-words	(b) 224k-bytes	(c)]	192k-v	word	S	(0	l) 19	2k-b	ytes		
		PART – B (5 :	x 3= 15	Marks	5)							
6.	Draw the basic butterfly	y structure for radix	-2 DIT a	algorit	hm?						CC)1 U
7.	Determine the order of the butter worth analog filter for the given specification CO2 App											
	$\alpha p = 5$, $\alpha s = 20$, $\Omega p = 1$	=1000 rad/sec and $\Omega s = 500$ rad/sec										

8.	Hov filte	How the constant group delay and phase delay achieved in linear phase FIR CO1 filters?						
9.	Wha	t is meant by finite word length effects in digital filters? CO1						
10.	List	st any two instructions set of TMS320C54x Digital Signal Processors.						
		PART – C (5 x 16= 80 Marks)						
11.	(a)	By means of the DFT and IDFT, determine the response of FIR filter with impulse response $h(n) = \{1,2,3\}$ to the input sequence $x(n) = \{1,2,2,1\}$.	CO2- App	(16)				
		Or						
	(b)	Compute 8-point DFT of the discrete time signal,	CO2- App	(16)				
		$\mathbf{x}(\mathbf{n}) = \{1, 2, 1, 2, 1, 3, 1, 3\}$						
		using Radix-2 DIF FFT.						
12.	(a)	Design a Butter worth digital IIR low pass filter using bilinear transformation by taking T=0.1 sec, to satisfy the following specification.	CO2- App	(16)				
		$0.6 \le H(e^{j\omega}) \le 1.0; \text{ for } 0 \le \omega \le 0.35\pi$						
		$ H(e^{j\omega}) \le 0.1; \text{ for } 0.75\pi \le \omega \le \pi$						
		Or						
	(b)	Design a Chebyshev digital IIR low pass filter using impulse invariant transformation by taking T= 1 sec, to satisfy the following specification.	CO2- App	(16)				
		$0.87 \le H(e^{j\omega}) \le 1.0$; for $0 \le \omega \le 0.25\pi$						
		$ H(e^{j\omega}) \le 0.35; \text{ for } 0.375\pi \le \omega \le \pi$						
13.	(a)	Design a linear phase FIR BPF to pass frequency in the range 0.35π to 0.48π rad/sample using rectangular window, by taking 5 samples of window sequence. Analyze the above with Hamming window and comment about the result. Or	CO3- Ana	(16)				

(b) Design a bandpass filter using frequency sampling method for the CO3- Ana (16) specifications,

Sampling frequency F= 8000Hz

Cutoff frequency $fc_1 = 1000 \text{ Hz}$

fc₂=3000 Hz

Determine the filter coefficients for N=7. If N=5 what will be the filter coefficients?

14. (a) For second-order IIR filter, $H(z) = 1 / (1-0.5z^{-1})(1-0.45z^{-1})$. Study CO2- App (16) the effect of shift in pole location with 3bit coefficient representation in direct and cascade form.

Or

- (b) In the IIR system given below the products are rounded to 4-bits CO2- App (16) (including sign bit). $H(z) = 1 / (1-0.35z^{-1}) (1-0.62z^{-1})$. Find the output round off noise power in a)direct form realization b)cascade realization..
- 15. (a) With a neat functional block diagram, explain the architecture of CO1-U (16) TMS320C5X processor and explain

Or

(b) List the addressing modes of TMS320C5X processor with relevant CO1-U (16) examples.