_					
Reg. No.:					

Question Paper Code: 45423

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Fifth Semester

Electrical and Electronics Engineering

14UEC523 - COMMUNICATION ENGINEERING

(Common to Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)

(Regulation 2014)

		A)	egulation 2014)				
Dι	uration: Three hours			Maximum: 100 Marks			
		Answ	ver ALL Questions				
		PART A	$-(10 \times 1 = 10 \text{ Marks})$				
1.	The	signal can l	be detected with the he	elp of synchronous detector.			
	(a) SSB	(b) DSB-SC	(c) SSB-SC	(d) none of these			
2.	VSB modulation is	preferred in TV	because				
	(b) it avoids ph	ne bandwidth requase distortion at labetter reception se					
3.	Frequency shift keying is used mostly in						
	(a) Satellite Co(c) Telegraphy	mmunication	(b) Telephony(d) Radio Transr	nission			
4.	The bandwidth of I	BFSK is	that of the bandwidth	of BPSK.			

(c) less than

(d) none of these

(a) thrice

(b) twice

5.	5. The information rate R is less than or equal to a rate C is called the							
	(a) Channel capaci(c) Probability	ty	(b) Coo (d) Info	ding ormation rate				
6.	Linear codes are used f	or						
	(a) Forward error(c) Backward error		` ′	ekward error detection ward error correction				
6.7.8.	The most important application of the spread spectrum technique is							
	(a) time division m(c) both (a) and (b)			(b) code division multip(d) none of these	olexing			
8.	The spread spectrum is a FM or FSK technique.							
	(a) Frequency Hop(c) Transistors	ping	(b) Direct Sequence(d) Semiconductor Lasers					
9.	is used as a figure of merit for the fiber.							
	(a) Aperture angle(c) Numerical Ape	rture	(b) Refractive Index(d) None of these					
10.	Detector used in optical	l fiber is						
	(a) Photo diodes(c) Transistors		(b) LEDs(d) Semiconductor Lasers					
7.	The most important application of the spread spectrum technique is							
	(a) time division m(c) both (a) and (b)	1 0		(b) code division multip(d) none of these	olexing			
8.	The baud rate is defined as							
	(a) The no of samp(c) Both (a) and (b)	•		(b) The no. of revolutions per second(d) None of these				
9.	Example of power limited communication channel is							
	(a) co-axial cable	(b) cellular cha	annel	(c) satellite	(d) PSTN			
10.	is a fiber	specification, m	nost impo	rtant to the designer poin	t of view			
	(a) Bandwidth	(b) Attenuation	n	(c) Numerical aperture	(d) None			

- 11. State the Carson's rule.
- 12. Define bit rate and baud rate.
- 13. Compare NRZ and RZ.
- 14. List the different types of handoffs.
- 15. Define numerical aperture.

PART - C (5 x
$$16 = 80 \text{ Marks}$$
)

16. (a) Explain the operation of Super heterodyne receiver and compare its performance with Tuned Radio frequency receiver. (16)

Or

- (b) Using suitable Mathematical analysis show that FM modulation produces infinite sidebands. Also deduce an expression for the frequency modulated output and its frequency spectrum. (16)
- 17. (a) With a neat block diagram explain the PCM modulation and demodulation. Derive the processing gain of the DPCM. (16)

Or

- (b) Explain QPSK transmitter and receiver with block diagram. Also draw the constellation and phasor diagram of QPSK. (16)
- 18. (a) A database management system has following alphabet with probability of occurrence as shown below. Generate the Huffman code with minimum code variance. Determine the code variance and code efficiency. (16)

Symbol	S_0	S_1	S_2	S_3	S_4	S_5	S_6
Probability	0.12	0.062	0.2	0.062	0.12	0.12	0.2
	5	5	5	5	5	5	5

Or

(b) Briefly discuss on various error control codes and explain in detail with one example for convolution code. (16)

19.	(a)	(i) Compare the performance of CDMA with FDMA and TDMA.	(8)
		(ii) Draw and explain the block diagram of transmitter and receiver of CDMA.	(8)
		Or	
	(b)	With neat block diagram explain the frequency division multiple access technic Discuss its application in communication.	que (16)
20.	(a)	(i) Illustrate the uplink and downlink model of satellite communication system.	(8)
		(ii) Explain the concept of Optical sources and detectors.	(8)
		Or	
	(b)	Explain Optical Fiber Communication link with a neat block diagram. List advantages and disadvantages of Optical Fiber Communication.	the (16)