Reg. No.:					

Question Paper Code: 45404

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Fifth Semester

Electronics and Communication Engineering

14UEC504 - TRANSMISSION LINES AND WAVEGUIDES

(Regulation 2014)

(Smith chart may be permitted)

D	uration: Three hours			Maximum: 100 Marks
		Answer	ALL Questions	
		PART A - ($10 \times 1 = 10 \text{ Marks}$	
1.	Which stands for dB re	lative level?		
	(a) dBrn	(b) <i>dBa</i>	(c) dBr	(d) dBx
2.	One decibel equals to			
	(a) 5.356N	(b) 8.686/	(c) 7.635	N (d) None of these
3.	A transmission line is reflection coefficient is		a load equal to its	characteristic impedance. The
	(a) plus one	(b) minus	one (c) zero	(d) infinity
4.	Aband is the ran without being attenuate	-	ies or wavelengths	that can pass through a filter
	(a) Pass	(b)Band	(c) Base	(d) Low
5.	Reflection Coefficient	K=Voltag	e at load /Incident v	oltage at the load.
	(a) Reflected	(b) Incident	(c) Reflection	(d) Inflection

6.		the wave travels a	•	while the phase angle	is changing through		
	(a) 1	(b) 2	(c) 2.5	5 (d) 1.5			
7.	Assumptions conductance (f the performan	nce of the radio freq	uency Line, leakage		
	(a) 0.5	(b) 0	(c) 2.5	5 (d) 1.5			
8.	Dominant mo	de means					
	(a) highest cut-off frequency(c) guide wavelength			(b) lowest cut-off wavelength(d) lowest cut-off frequency			
9.	Dominant mo	de in circular cavit	y resonator is				
	(a) TM_{010}	(b)	TM_{111}	(c) TM_{101}	(d) TM $_{100}$		
10.	Principal mod	le is					
	(a) TE mo	ode (b)	TM mode	(c) TEM mode	(d) None		
		PAR	$T - B (5 \times 2 = 1)$	10 Marks)			
11.	Define Charac	cteristic impedance) .				
12.	List the advan	tages of double stu	ıb matching ov	er single stub matchir	ıg.		
13.	Give the dom	inant mode for TE	and TM waves				
14.	Define phase	velocity.					
15.	What are the 1	root values for the	TE modes?				
		PAR	Γ - C (5 x 16 =	80 Marks)			
16.	(a) (i) Desig	n a T-type prototy	pe band pass fi	lter.	(10)		
	, ,	nstant K T-section n impedance is 600		r has a cut-off freque the value of L.	ency of 10 kHz. The		
			Or				
	(b) (i) Deriv	e the current and v	roltage ratio as	exponentials propaga	tion constant. (8)		

		(ii) Design m derived T type low pass filter to work into load of 500 Ω with cut-off frequency at 4 kHz and peak attenuation at 4.15 kHz. (8)
17.	(a)	A transmission line has the following primary constants measured per km $R = 10.15 \ \Omega$, $L = 3.93 \ mH$, $C = 0.00797 \mu F$, $G = 0.29 \mu mho$. Determine Z_0 and propagation constant at a frequency of $796H_z$. Also calculate at the sending end it the line is terminated in its characteristic impedance. (16)
		Or
	(b)	Design a single stub match for a load of 150 + j225 ohms for a 75 ohms line at 500 MHz using smith chart. (16)
18.	(a)	Derive the expression for the field strength for TM waves between Parallel plates propagating in Z direction. (16)
		Or
	(b)	Explain about transverse electromagnetic waves between a pair of perfectly conducting planes. (16)
19.	(a)	Derive the field component of the wave propagating between parallel planes. (16)
		Or
	(b)	Explain about the excitation modes in rectangular wave guide. (16)
20.	(a)	Obtain the electromagnetic field equations for TE waves in rectangular waveguides. (16)

Or

of the rectangular cavity resonator.

(b) What is meant by cavity resonator? Derive the expression for the resonant frequency

3

(16)