Reg. No.:

Question Paper Code: 93022

B.E./B.Tech. DEGREE EXAMINATION, MAY 2022

Third Semester

Computer Science and Engineering

19UMA322- Probability, Queueing Theory and Numerical Methods (Regulation 2019)

(Common to Information Technology)

Duration: Three hours Maximum: 100 Marks

Answer All Questions

PART A - (10x 1 = 10 Marks)

If Moment generating function $M_x(t) = \frac{2}{2-t}$, then the mean value 1.

CO1- App

(a) 1/2

(b) 2

(c) 1/4

(d) 1/3

A Continuous r.v has a p.d.f $f(x) = 3x^2$, $0 \le x \le 1$, If P(X > b) = 0.05, then value of b is

CO1- App

- (a) 0.9308
- (b) 0.9803
- (c) 0.9830

(d) 0.9038

The relation between $L_s \& L_q$ is

CO6- U

- (a) $L_s = \lambda L_a$
- (b) $L_a = \lambda L_s$
- (c) $L_q = L_s + \frac{\lambda}{u}$ (d) $L_s = L_q + \frac{\lambda}{\mu}$

For a model (M/M/1): (∞ /FCFS)The arrival rate is 3 per hour and service rate CO2- App 4. is 4 per hour then W_s

- (a) 55 Minutes
- (b) 65 Minutes
- (a) 55 Minutes
- (b) 65 Minutes

5. One of the normal equation of parabola $y = a + bx + cx^2$ is CO6- U

$$\sum xy = a \sum x + a \sum x + a \sum x + a \sum x + a \sum x = a \sum x$$

(b)
$$\sum xy = a \sum x^2 + 3 + 3 + 4$$

$$\sum xy = a \sum x + b \sum x^{2} + c \sum x^{3}$$
 (b)
$$\sum xy = a \sum x^{2} + b \sum x^{3} + c \sum x^{4}$$
 (c)
$$\sum y^{2}x = a \sum x^{2} + b \sum x^{3} + c \sum x^{4}$$
 (d)
$$\sum xy^{2} = a \sum x + b \sum x^{3} + c \sum x^{4}$$

(d)
$$\sum xy^2 = a\sum x + \sum x^3$$

number of normal equations are required to fit a straight line in CO6- U method of least squares

	(a) 1		((b) 2			(a)	1		(b) 2		
7.	For a 3×3 matrix , 5, 10 are the Eigen values, trace of matrix is equal to then dominant Eigen value							3 CC	06- U			
	(a)	12		(b) -1	2		(a)	12		(b) -1	12	
8.	Itera	tion method c	onver	ges i	$f g^1(x)$						CO	06- U
	(a) >	·1		(b)<1			(a)	>1		(b)<1		
9.	In Euler's method, if h is small, the method is too									CO	06- U	
	(a) f	ast		(b)sl	ow		(a) fast		(b)s	low	
10.	The	first two steps	of th	e fou	rth ord	er Run	gekutta	method	d use		CO	06- U
	(a) E	Backward Eule	er's m	ethoc	1		(b)	Taylor	's series	method		
	(c) Forward Euler's method (d) Euler's method									od		
	$PART - B (5 \times 2 = 10 Marks)$											
11.	A coin is tossed thrice; Compute the probability that there will appear atleast onehead?											
12.	Exp	lain Kendall's	Nota	tion	(a/b/c)	(d/e) o	of a que	ueing n	nodel		CO	06- U
13.	Write down the Normal Equations of the curve $y = ae^{bx}$ CO6- U											
14.	Write the condition of convergence of Newton's method CO6- U											
15.	Writ	te down the M	ilne's	predi	ictor ar	nd corre	ector for	mula.			C	O5 U
					PA	ART – C	C (5 x 10	6 = 80N	Iarks)			
16.	(a)	(i)) Calculate	e the (Corre	lation	coeffici	ient for	the foll	owing d	lata	CO1-Ana	(8)
		X	78	89	97	69	59	79	61	61		
		Y	17 5	13 7	156	112	107	136	123	108		
(ii) Compute the moment generating function of Exponential CO1-Ana distribution and hence find it's mean and variance Or										CO1-Ana	(8)	
	(b)	(i) A RV X l	nas the	e foll	owing		ution				CO1 -Ana	(8)

(i).Compute $P(X \ge 2)$ and E(X)

2

2a

3

3a

(ii) Compute Var (X)

1

2a

0

a

X

P(X)

4

3a

5

6a

6

8a

(ii) If the density function of a continuous r.v X is given by

(8)

(16)

$$f(x) = \begin{cases} ax & 0 \le x \le 1 \\ a & 1 \le x \le 2 \\ 3a - ax & 2 \le x \le 3 \\ 0 & otherwise \end{cases}$$

- (a) Compute the value of "a"
- (b) Compute the c.d.f of X
- 17. (a) (i) Assume that the good trains are coming in a yard at the rate of 30 CO2 -Ana trains per day and suppose that the inter arrival times follow an exponential distribution. The service time for each train is assumed to be exponential with an average of 36 minutes. If the yard can admit 9 trains at a time(there being 10 lines, one of which is reserved from shunting purpose), Identify the Model ,Compute the probability that the yard is empty and Compute the average queue length.
 - (ii) Customers arrive at a watch repair shop according to a Poisson CO2 -Ana process at a rate of one per every 11 minutes, and the service time is an exponential random variable with mean 6 minutes. Identify the Model, Compute the following i) the average number of customers in the shop L_s ii) the average time a customer spends in the shop W_s iii) the average number of customers in the queue L_q iv) the probability that the server is idle.

Or

- (b) A petrol pump station has 4 pumps. The service times follow the CO2 -Ana exponential distribution with a mean of 6 minutes and cars arrive for service in a Poisson process at the rate of 30 cars per hour. Identify the Model, Compute the following i) the Probability that an arrival would have to wait in line? ii) the average waiting time, average time spent in the system and the average number of cars in the system iii) For what percentage of time would a pump be idle on an average?
- 18. (a) (i) Applying least square method techniques fit a straight line CO3-App (8) y = a + bx

X	0	3	5	6	8	10	12
Y	2	5	8	9	11	12	15

(ii) Applying group average method fit a second degree parabola CO3- App (8) $y = a + bx + cx^2$ for the following data

X	1	2	3	4	5
Y	5	12	26	60	97

Or

(b) (i) Applying method of moments fit a straight line y = ax + b

CO3-App (8)	CO3-	App	(8)
-------------	------	-----	-----

(8)

(8)

X	1	3	5	7
Y	4	8.5	11.5	15

(ii) Applying least square method techniques fit the curve $y = ab^x$ with CO3-App the following data:

X	1	2	3	4	5
Y	150	99	60	48	18

- 19. (a) (i) Compute the real positive root of $\cos x xe^x = 0$ by Newton's Raphson Method. Correct to 3 decimal places
- CO4-App (8)
- (ii) Using Gauss Seidel method, solve the following Equations 3x 13y 3z = 49, 5x 6y + 17z = 45, 11x + 2y 2z = -31
- CO4-App

Or

- (b) (i) Using Gauss Seidel method, Solve 28x+4y-z = 32: x+3y+10z = 24 CO4 -App (8) 2x+17y+4z = 35
 - (ii) Compute the real positive root of $3x \cos x = 1$ by Iterative method CO4 -App (8)
- 20. (a) (i) Using R.K Method of 4th order, solve $\frac{dy}{dx} = y x^2$ with y (0.6) = CO5-App (8)
 - 1.7379, Compute y (0.8) by taking h=0.2
 - (ii) Using Taylor series method Compute y(0.1) for

CO5- App (8)

$$\frac{dy}{dx} = x^2 y - 1$$
 with y(0) = 1

Or

(b) Given
$$\frac{dy}{dx} = 1 + y^2$$
, $y(0) = 0$, $y(0.2) = 0.2027$, $y(0.4) = 0.4228$, $y(0.6) = CO5$ - App (16) 0.6841 Evaluate y(0.8) By Adams – Bashforth Method