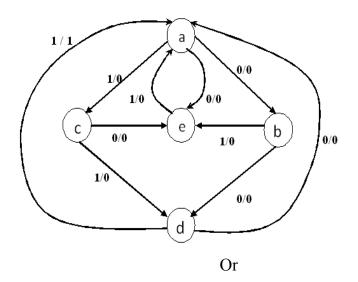
С		Reg. N	lo.:				
		Question	n Paper Code	e: 93303]		
		B.E./B.Tech. DEGR	EE EXAMINAT	TION, MAY	2022		
		r	Third Semester				
		Compute	er Science Engine	eering			
		19UCS3(03 – Digital Elect	tronics			
		(I	Regulation 2019)				
Dura	ation: Three hour	S			Maximum:	100 Marks	
		Ansv	wer ALL Questio	ons			
		PART	A - $(5 \times 1 = 5 \text{ Ma})$	arks)			
1.	In which code the	he successive code ch	naracters differ in	only one b	it position?	CO1-	
	(a) gray code	(b) excess 3 code	(c) 8421 cod	de (d)	algebraic code	e	
2.	Infer the Boolean expression of barrow in half-subtract or					CO1- R	
	(a) AB'	(b) A'B	(c) AB		(d)A'B'		
3.	Show the input value for S and R whether it is Reset state.			C	CO1- R		
	(a) 00	(b) 01	(c) 10	(d) 11			
4.	Which is not belong to the categories of hazard.				COl		
	(a) Static	(b) Dynamic	(c) Stat	ic-1	(d) Static	-9	
5.	CMOS technology is used in				C	CO1- R	
	(a) Inverter	(b) Mic	(b) Microprocessor				
	(c) Digital logic (d)Both micro			n microproc	processor and digital logic		
		PART -	-B(5 x 3 = 15 M)	arks)			
6.	State and prove	n	CO1- R				
7.	Design circuit to detect invalid BCD number					CO1-	
8.	Differentiate Moore and Mealy state machine				CO1-		
9.	Explain the steps involved in state reduction					CO1-	
10.	Draw the CMO	S inverter circuit				CO1·	

 $PART - C (5 \times 16 = 80 Marks)$

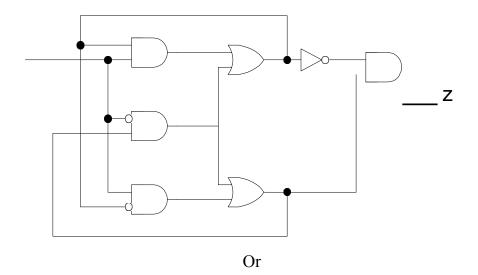
- 11. (a) (i) Find the Min term expansion of f(a,b,c,d) = a'(b'+d) + acd'.
 CO1- App (8)

 (ii) Simplify the expression using k-map
 CO1- App (8)


 F(W,X,Y,Z) = (1,4,6,7,8,9,10,11,15) Or
 - (b) Simplify the following Boolean function by using the Tabulation CO1- App (16) method

F=(0, 1, 2, 8, 10, 11, 14, 15).

12. (a) Design BCD to excess 3 code converter CO2- App (16)


Or

- (b) Elaborate about half subtractor and how full subtractor can be CO1-U (16) implemented using 2 half adders with the necessary truth table and equation
- 13. (a) Design a sequential circuit for a state diagram shown in the CO2- App (16) following figure. Use state assignment rules for assigning states and compare the required combinational circuit with straight binary assignment

(b) Explain different types of about shift registers in detail with the CO3- App (16) necessary diagram

- CO2- App (16)
- 14. (a) Write logic equations for the excitation variables in terms of the circuit inputs and secondary variables:

(b) Design a asynchronous sequential circuit with 2 inputs T and C. The CO2- App (16) output attains a value of 1 when T = 1 & c moves from 1 to 0. Otherwise the output is 0.

15. (a)		Implement the switching functions.	CO2- App	(16)
		Z1=ab'd'e+a'b'c'd'e'+bc+de		
		Z2=a'c'e		
		Z3=bc+de+c'd'e'+bd		
		Z4=a'c'e+ce using 5 x 8 x 4 PLA		
		Or		
	(b)	(i) Implement the following min terms using PLA	CO2- App	(8)
	$F1(A, B, C) = \sum (0, 1, 2, 4)$			
		$F2(A, B, C) = \sum (0, 5, 6, 7)$		
	(ii) Discuss the characteristics of various digital logic families	CO1- U	(8)	