A
\mathbf{A}
_

Reg. No.:				

Question Paper Code: 53022

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Third Semester

Computer Science Engineering

15UMA322 - PROBABILITY, STATISTICS AND QUEUEING SYSTEMS

(Common to Information Technology branch)

		(Regulati	on 2015)		
		(Statistical tables are	e may be permitted)		
Dur	ation: Three hours	Answer ALI		laximum: 10	00 Marks
		PART A - (10 x	1 = 10 Marks)		
1.	The mean and variance respectively. Find P(X		ribution are 4 and 3		CO1- R
	(a) $(1/4)^{16}$	(b) 1/4	(c) $(3/4)^{16}$	(d)3/4	
2.	Find λ , if X follows P	oisson Distribution su	ch that $P(X=2)=3P(X=3)$.		CO1- R
	(a) 3	(b) 4	(c) 2	(d) 1	
3.	Cov(X, Y) =				CO2- R
	(a) $E(XY) - E(X) E($	Y)	(b) $E(X')E(Y') - E(X.Y)$)	
	(c) $E(X)E(Y) - E(X.Y)$	Y)	(d) $E(XY)-E(X')E(Y')$		
4.	If X and Y are indevariance of 3X+4Y.	ependent RVs with v	variances 8 and 5.find th	e	CO2- R
	(a) 152	(b) 153	(c) 163	(d) 162	
5.	The number of experi	mental units in the blo	ck is called as		CO3- R
	(a) Block design	(b) Block size	(c) Complete block unit	(d) Unit	size
6.	A	is a variable defining	a categorization.		CO3- R
	(a) Fixed Factor	(b) Factor	(c) Local Control	(d) Error	Control

7.	queueing model	,	presentation (a/b/c): (d/e) of a	CO4- R		
	(a) Service distri	bution	(b) System capacity			
	(c) Arrival distri	bution	(d) No.of. server			
8.	M/G/1 Queuing	system is Markovian – Co	omment the statement	CO4- R		
	(a) Correct	(b) Wrong	(c) Partially Correct	(d) None of these		
9.	Find the expecte	ed number of customers	in the system, if $\lambda=1/13$ and	CO5- R		
	μ =1/4 in (M/M/)	1);(∞/FCFS)				
	(a) 0.4444	(b) 0.777	(c) 1.4444	(d) 1.04		
10.	The service facil	ities are arranged in a sec	quence and the flow is always	CO5- R		
	in a single direct	ion is called				
	(a) Series Queue	(b) Open Queue	(c) Closed Queue	(d) Parallel Queue		
		PART – B (5	x 2= 10 Marks)			
11.	11. A fair coin is tossed twice; find($X \le 1$) where X denotes number of heads in each experiment.					
12.	12. Define Conditional distribution for two-dimensional discrete and continuous random variable.					
13.	List out the three	e basic principles of exper	rimental design.	CO3- R		
14.	Write Little's formula for Queuing Theory. CO4- R					
15.	Define: Open Jackson Networks.					
		PART – C	(5 x 16= 80 Marks)			
16.	length of l hours and	ife which is normally d	es light bulbs that have the istributed with mean of 800 hours. Find the probability 34 hours.	CO1- App (8)		
	given by $f(x) = \begin{cases} a \\ 3(a) \end{cases}$	asity function of a continuous, $0 \le x \le 1$ a, $1 \le x \le 2$ $-x$), $2 \le x \le 3$ b, otherwise lue of 'a' and CDF of X	ious random variable X is	CO1- App (8)		

(b) (i) Find the MGF mean and variance of Gamma distribution. CO1- App (12)

(ii) A coin is tossed two times, if X denotes the number of heads. CO1- App (4) Find the probability distribution of X.

17. (a) The joint probability distribution of two dimensional random CO2- App variable (X,Y) is given by f(x,y)= 1/3 (x+y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 2. Find the correlation coefficient. Also find the equations of two lines of regression.

Or

- - (ii) If the joint PDF of (X, Y) is given by $f(x, y) = e^{-(x+y)}$, x>0, y>0, CO2- Ana Prove that X and Y are uncorrelated. (8)
- 18. (a) Analyze the following latin square experiment. CO3- Ana (16)

A 105	B 95	C 125	D 115
C 115	D 125	A 105	B 105
D 115	C 95	B 105	A 115
B 95	A 135	D 95	C 115

Or

(b) Analyze the variance in latin square of yields (in kgs) for paddy CO3- Ana (16) where P,Q,R,S denote the different methods of calltivation.

S 122	P 121	R 123	Q 122
Q 124	R 123	P 122	S 125
P 120	Q 119	S 120	R 121
R 122	S 123	Q 121	P 122

19. (a) There are three typists in an office. Each typist can type an CO4-App (16) average of 6 letters per hour. If letters arrive for being typed at the rate of 15 letters per hour, what fraction of time all the typists will be busy? what is the average number of letters waiting to be typed?

- (b) Patients arrive at a clinic according to Poisson distribution at a CO4-App rate of 30 patients per hour. The waiting room dose not accommodate more than 14 patients. Examination time per patient is exponential with mean rate of 20 per hour.
 - (i) Find the effective arrival rate at the clinic.
 - (ii) What is the probability that an arriving patient will not wait.
 - (iii) What is the expected waiting time until a patient is discharged from the clinic?
- 20. (a) Derive the Pollaczek- Khintchine formula for M/G/1 queue. CO5- U Hence deduce the result for the queues M/D/1 and M/ E_k /1 as special cases.

Or

(b) In a network of three service stations 1, 2, 3, customers arrive at CO5-U
1, 2, 3 from outside, in accordance with the Poisson process having rates 5,10,15 respectively. The service times with the three stations are exponential with respective rates 10, 50, 100. The customer completing service at station 1 is equally like to go to station 2 or go to station 3 or leave the system. A Customer departing from service at station 2 always goes to station 3. A departure from service at station 3 is likely to go to the station 2 or leave the system. What is the average number of customer in the system? And what is the average time the customer spend in a system?