C		Reg. No. :								
		Question Paper	Code : 53	3202]					
	B .E./	B.Tech. DEGREE EX.	AMINATIO	N, MA	Y 202	2				
		Third Se	emester							
		Computer Science	and Engine	ering						
		15UCS302 -DATA	A STRUCTU	VRES						
		(Regulatio	ons 2015)							
Dur	ation: Three hours				Ν	laxir	num	: 100) Mai	rks
		Answer ALI	_ Questions							
		PART A - (5 x	1 = 5 Marks	5)						
1.	The maximum numb	er of nodes in a binary	tree of heigh	th is					CO	1 - R
	(a) h-1 2+1	(b) h+1 2– 1	(c) h*1 2-1	l		(d)	h-1	2-1		
2.	What are the worst of search tree?	complexities	of a b	oinary				CO	2- U	
	(a) O(n), O(n)	(b) O(logn), O(logn)	(c) O(log	n), O(n	.)	(d)	O(n)), O(logn)
3.	Heap can be used as								CO	3- R
	(a) Priority queue		(b) Stack							
	(c) A decreasing ord	er array	(d) None o	of the m	nentior	ned				
4.	How many key v function $h(k) = k$ me given below?	alues encountered co od 10 and linear probin	ollision usir ng will resul	ng the t in th	hash e hash			С	:O4-	App
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									

(b) 3	

(c) 4

(d) 5

(a) 2

5. Given an undirected graph G with V vertices and E edges, the sum of the CO5- R degrees of all vertices is

	(a) E	Ξ	(b) 2E	(c) V	(d) 2V				
PART - B (5 x 3 = 15 Marks)									
6.	Define the following terminologies in a tree					CO1- U			
	(a) S	Siblings,Parent							
	(b) I	Depth,Path							
	(c) I	Height,Degree							
7.	Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into CO2- App an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the in-order traversal sequence of the resultant tree?								
8.	Defi	ne Decision Tree.				CO3- R			
9.	Wha	at is open addressir	ng? List the common c	ollision resolution strateg	ies.	CO4- R			
10.	Defi	ne Shortest path p	roblem. Give examples	S.		CO5- U			
			PART – C (5	x 16= 80Marks)					
11.	(a)	Define Binary Tr	ee. Construct Binary t	tree from the in-order and	d CO1	- App	(16)		
		pre order traversa	l given and find the pr	re order traversal from th	e				
		Binary tree.							
		Inorder:H D I J	EKBALFMCNO	G O					
		Postorder: H I I	D J E B L M F N O G	CA					
			Or						
	(b)	Explain the conce	epts of on threaded bin	ary tree in detail.	CO1-	- App	(16)		
12.	(a)	Construct AVL T 1,2,3,4,8,7,6,5,11	ree for the following d 1,10,12. Or	lata	CO2-	- App	(16)		
	(b)	Explain the B-Tre	ee with example		CO2	- App	(16)		

13. (a) Explain Insertion in Deap and construct deap for the following CO3-U (16) elements. 14,8,78,2,85,68.

Or

- (b) Discuss about Game tree with suitable example. CO3- U (16)
- 14. (a) What is hashing? Explain open addressing and separate chaining CO4-U (16) methods of collision resolution techniques with examples.
 - Or
 - (b) Explain in detail about extendible hashing and its Applications. CO4- U (16)
- 15. (a) Find the minimum spanning tree using Kruskal's algorithm for CO5- App (16) the following Graph and trace the algorithm.

Or

(b) Explain Dilkstra's single source shortest path problem with neat CO5- App (16) example.