Reg. No. :

C

(a) Decision trees

	Question Pape	er Code: 96203						
B.E./B.Tech. DEGREE EXAMINATION, MAY 2022								
	Sixth S	Semester						
Computer science and Engineering								
	19UCS603- ARTIFICIAL INTELLIGENCE AND MACHINE LERANING							
	(Regulations 2019)							
Dura	tion: Three hours		Maximum: 100 Ma	urks				
	Answer A	ll Questions						
	PART A - (5	5x 1 = 5 Marks)						
1.	What is the heuristic function of greedy be	est-first search?		CO1- U				
	(a) $f(n) != h(n)$ (b) $f(n) < h(n)$	(c) $f(n) = h(n)$	(d) $f(n) > h(n)$					
2.	What can be viewed as single literal of dis	junction?		CO1- U				
	(a) Multiple clause	(b) Combine clause						
	(c) Unit clause	(d) None of the men	tioned					
3.	3. Which variable cannot be written in entire distribution as a table?			CO3- U				
	(a) Discrete	(b) Continuous						
	(c) Both Discrete & Continuous	(d) None of the men	tioned					
4.	Which of the following is the model used to	for learning?		CO1- U				

(c) Propositional and FOL rules (d) All of the mentioned 5. K-means clustering algorithm is an example of which type of CO1-U clustering method? (d) Random (a) Hierarchical (b) Partitioning (c) Density Based $PART - B (5 \times 3 = 15 Marks)$ Differentiate uninformed and informed search strategies . 6. CO1- U

(b) Neural networks

- Convert into CNF B2,1<=> (P1,1 V P2,2 V P3,1) CO2- App 7.
- List out the applications of Bayesian N/W? CO1- U 8.

9.	Mer	the different forms of learning CO1- U		J
10.	List	out some applications of unsupervised learning.	CO1- U	
		PART – C (5 x 16= 80Marks)		
11.	(a)	Explain with neat diagram the four different types of agent programs	CO1-U	(16)
		Or		
	(b)	Explain in detail the uninformed search strategies and compare the analysis of various searches.	CO1-U	(16)
12.	(a)	Consider the following facts. John likes all kinds of food	CO2-App	(16)
		Apples are food		
		Chicken is food		
		Anything anyone eats and isn't killed by is food		
		Bill eats peanuts and is still alive		
		Sue eats everything bill eats.		
		(i) Transform these sentences into FOL		
		(ii) Arrange those into clause form.		
		(iii) Justify John likes peanuts by resolution.		
		(iv) Justify John likes peanuts by Backward Chaining.		
		Or		

(b) Consider the following 5 facts that are added to a knowledge base CO2-App (16) in turn. Hobbit,

Hero, Hafling are predicates, FinalBattle is a function, Frodo and Mount Doom are

constants, and x and y are variables that are universally quantified.

1. Journey(Frodo, Mount Doom)

2. Hafling(x) \rightarrow Hobbit(x)

3. Journey(x, y) \rightarrow FinalBattle(x, y)

4. Hafling(Frodo)

5. Hobbit(x) \land FinalBattle(x, Mount Doom) \rightarrow Hero(x)

(i) Show how forward chaining can be used to infer whether Frodo is a Hero (i.e.Hero(Frodo)).

(ii) Show how backward chaining can be used to infer whether Frodo is a Hero (i.e. Hero(Frodo)).

(iii) Justify "Frodo is Hero" by resolution.

13.	(a)	(i) Explain Exact Inference in Bayesian Network with an	CO1-U	(8)		
		(ii) Explain the process of Inference using full joint distribution with example.	CO1-U	(8)		
		Or				
	(b)	(i) Describe a method for constructing Bayesian Networks	CO1-U	(8)		
		(ii) Explain Variable elimination algorithm for answering queries on Bayesian networks	CO1-U	(8)		
14.	(a)	Explain about Decision tree learning with an example Or	CO1- U	(16)		
	(b)	Explain about Artificial Neural network with an example	CO1- U	(16)		
15.	(a)	Apply K-means clustering to the following 8 examples to convert into them into 3 clusters: $A1=(2,10)$, $A2=(2,5)$, $A3=(8,4)$, $A4=(5,8)$, $A5=(7,5)$, $A6=(6,4)$, $A7=(1,2)$, $A8=(4,9)$. Assume the initial seeds are A1,A4,A7.	CO2-App	(16)		
Or						
	(1,)	Annia himmedical electronic to the following Q and males to	CO2 4	(10)		

(b) Apply hierarchical clustering to the following 8 examples to CO2-App (16) convert into them into cluster: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).