\mathbf{C}

Reg. No.:					

Question Paper Code: 96202

B.E./B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

Computer science and Engineering

19UCS602- CRYPTOGRAPHY AND NETWORK SECURITY

		(R	egulations 2019)			
Duration: Three hours				Maximum: 100 Marks		
		Ans	swer All Questions			
PART A - $(5x 1 = 5 Marks)$						
1.	Caesar Cipher is	an example of			CO1- U	
	(a) Poly-alphabe	tic Cipher	(b) Mono-alphabetic C	(b) Mono-alphabetic Cipher		
	(c) Multi-alphab	etic Cipher	(d) Bi-alphabetic Cipl	(d) Bi-alphabetic Cipher		
2.	The number of to	ests required to brea	k the DES algorithm are		CO2- U	
	(a) 2.8×1014	(b) 4.2×109	(c) 1.84×1019	(d) 7.2×1016		
3.	Basically, in SH. bits for the hash	_	is divided into blocks of size	CO3- U		
	(a) 1024	(b) 512	(c) 256	(d) 1248		
4.	Extensions were	added in which vers	sion?		CO1- U	
	(a) 1	(b) 2	(c) 3	(d) 4		
5.	In, there cauthorities.	can be multiple paths	s from fully or partially trusted	d CO1- U		
	(a) X509	(b) PGP	(c) KDC	(d) none of the above		
		PART -	$-B (5 \times 3 = 15 \text{Marks})$			
6.	Define Model of	CO	1- U			

7. Assume that a = 255 and n = 11. We can find q = 23 and r = 2 using the

255 and n=11

division algorithm we have learned in arithmetic. Calculate q and r for a= -

CO2- App

8.	Using the properties of discrete logarithms, show how to solve the following congruence: $x \ 2 \equiv 36 \pmod{77}$.					
9.		ign the role of Ticket Granting Server in inters realm operations of beros.	CO2- App			
10.	Doe	Does the firewall ensure 100% security to the system? Comment CO4-				
		$PART - C (5 \times 16 = 80 Marks)$				
11.	(a)	Illustrate the Classical Encryption Technique with an example Or	CO1-U	(16)		
	(b)	Discuss the differences between steganography and cryptography with example in details	CO1-U	(16)		
12.	(a)	Describe AES algorithm with all its round functions in detail. Or	CO1-U	(16)		
	(b)	Describe DES algorithm with neat diagram and explain the steps.	CO1-U	(16)		
13.	(a)	Examine Elliptic Curve Cryptography Simulating ElGamal. Or	CO4-Ana	(16)		
	(b)	Users A and B use the Diffie-Hellman key exchange technique, a common prime q=11 and a primitive root alpha=7. (i) If user A has private key XA=3.What is A's public key YA? (ii) If user B has private key XB=6. What is B's public key YB? (iii) What is the shared secret key? Also write the algorithm.	CO4-Ana	(16)		
14.	(a)	Develop the process of deriving eighty 64-bit words from 1024 bits for processing Of a single blocks and also discuss single round function in SHA-512 algorithm. Show the values of W16, W17, W18 and W19 Or	CO2- App	(16)		
	(b)	Design the steps involved in Signature generation and Verification functions of DSS.	CO1- U	(16)		
15.	(a)	Explain the architecture of IPsec in detail in detail with a neat block diagram Or	CO1-U	(16)		
	(b)	Describe PGP cryptographic functions in detail with suitable block diagrams.	CO1-U	(16)		