	Reg. No. :											
	Question Pa	per (Cod	e: 5	620	3						
	B.E. / B.Tech. DEGREE	EEXA	MIN	ATIO	DN, I	MAY	202	22				
	Sixt	th Sem	ester									
	Computer Scie	ence ar	nd Ei	ngine	ering	g						
	15UCS603- ARTI	FICIA	L IN	ΓELI	LIGE	INCE	Ξ					
	(Regu	ulation	2015	5)								
Dur	ation: Three hours					Max	kimu	m: 1	00 N	lark	5	
	Answer	ALL (Quest	ions								
	PART A -	(5 x 1	= 5 N	Aark	s)							
1.	The process of removing detail from a r	eprese	ntatio	on is	calle	d					CC)1 - R
	(a) Representation (b) Inheritance	((c) A	bstra	ctior	L		((d) C	ohei	rence	;
2.	First Order Logic is also known as										CC)2-R
	(a) First Order Predicate Calculus (b) Quantification Theory						ry					
	(c) Lower Order Calculus (d) All of the mentioned											
3.	Which kind of planning consists of successive representations of different levels of a plan?							of		C	203-	Ana
	(a) Hierarchical planning	(1	b) No	n-hi	erarc	hical	l plaı	nning	3			
	(c) Project planning (d) None of the above					ve						
4.	Uncertainty arises in the wumpus wor give only	ld bec	ause	the	agen	t's s	enso	ors		C	204-	Ana
	(a) Full & Global information	(1	o) Pa	rtial	& Gl	obal	Info	ormat	tion			
	(c) Partial & local Information	(0	d) Fu	11 &	local	info	rmat	tion				
5.	What is used in determining the nature of the learning problem?									(CO5-	Ana
	(a) Environment	(1	(b) Feedback									
	(c) Problem	(d) All of the mentioned										
	PART – B	(5 x 3	= 151	Mark	s)							
6.	How can a problem be defined formally	using	five	comj	oone	nts?	Expl	ain.			CC)1 - R

7.	Wha	at are the components of a first order logic?	CO2-R						
8.	Wha	at is a planning graph?	CO3-U						
9.	Defi	ine uncertainty.		CO4-U					
10.	Wha	at is ensemble learning?		CO5-R					
PART – C (5 x 16= 80Marks)									
11.	(a)	Compare uninformed search strategies in detail. Or	CO1-Ana	(16)					
	(b)	Explain A* search algorithm in detail. Discuss its efficiency.	CO1-Ana	(16)					
12.	(a)	(i) How facts are represented using prepositional logic? Explain with example.	CO2-U	(08)					
		(ii) Give the Syntax and Semantics of a first order logic in detail with an example.	CO2-R	(08)					
	(b)	Or Explain forward chaining and backward chaining in detail for a first order definite clause.	CO2-Ana	(16)					
13.	(a)	Explain Planning with state space search with an example Or	CO3-Ana	(16)					
	(b)	Explain Hierarchical Planning in detail with an example.	CO3-Ana	(16)					
14.	(a)	What is Baye's rule? Explain how Baye's rule can be applied to tackle uncertain knowledge.	CO4-U	(16)					
	(b)	How to get the exact inference from Bayesian network. Explain the variable elimination algorithm and its complexity.	CO4-Ana	(16)					
15.	(a)	Explain the learning process in a decision tree? Or	CO5-U	(16)					
	(b)	How learning is done on a complete data using statistical methods?	CO5-App	(16)					