	Reg. No. :					
	Question Paper	· Code: 45	204			
B.E	. / B.Tech. DEGREE EX	AMINATIO	N, MAY 2	2022		
	Fifth Se	mester				
	Computer Science	and Engineer	ring			
	14UCS504 – THEORY	OF COMPU	TATION			
	(Regulation	on 2014)				
Duration: Three hours				Maximu	m: 100 l	Marks
	Answer ALL	Questions				
	PART A - (10 x	1 = 10 Marks	s)			
1. Any NFA can be c	onverted to a DFA					
(a) always		(b) nev	/er			
(c) depending	on the NFA	(d) dep	ending or	n the lang	guage of	NFA
	num number of states in		recognize	es the se	t of all b	oinary

(d) 3

2. What is the minimum numb strings which contains four consecutive 1's?

(a) 6 (b) 5 (c) 4

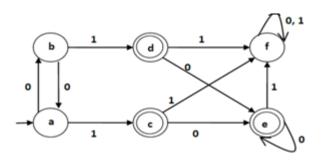
(a) 110*(0+1)	(b) 1(0+1)*101
(c) (10)*(01)*(00+11)	(d)((11)*+01)*

3. The string 1101 does not belong to the set represented by

4. The finite automata accept which of the following language.

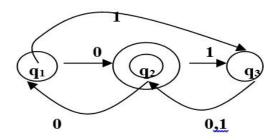
(a) context free language (b) regular language (c) context sensitive language (d) all the above

5. How many tuples are needed to represent an instantaneous description of a PDA?


(d) 4(a) 1 (b) 2 (c) 3

6.	The language $L = \{0^m 1^m 1^m 1^m 1^m 1^m 1^m 1^m 1^m 1^m 1$	$m / m \ge 1$ is a				
	(a) regular language(c) both (a) and (b)		` ´	(b) context free language(d) none of these		
7.	The class of context free	e language is n	ot closed u	nder		
	(a) Concatenation(c) Union			(b) intersection(d) Repeated concatenation		
8.	Context free grammars a	are closed und	er			
	(a) union	(b) kleene sta	r (c)	concatenation	n (d) all the above	
9.	What is the maximum r consists of four transitio		les is gener	rated to enco	de a turing machine	which
	(a) 12	(b) 24	(c)	36	(d) 48	
10.	The diagonalization lang	guage L _d is				
	(a) recursive(c) recursively enum	nerable	` ′	not recursive both (a) and	ly enumerable	
		PART - B	$(5 \times 2 = 10)$	Marks)		
11.	Differentiate DFA and N	VFA.				
12.	State the pumping lemm	a for regular l	anguages.			
13.	Define the language gen	erated by a PI	DA.			
14.	Design a turing machine	for computin	g the functi	f(x) = x	+ 1.	
15.	Define the classes P and	NP.				
		PART - C	$(5 \times 16 = 8)$	0 Marks)		
16.	(a) (i) Prove that for ev	very integer n	≥0 the num	ber 4 ²ⁿ⁺¹ + 3 ⁿ	⁺² is multiple of 13.	(10)
	(ii) Convert the give	en NFA to DF	A.			(6)
		δ	0	1		
		\rightarrow q0	$\frac{\{q0,q1\}}{2}$	q0		
		q1 q2	q2 q3	q1 q3		
		*q3	ф	q2 q2		

(b) (i) Consider the following E-NFA. Compute E-closure of each state and find its equivalent DFA. (10)


δ	3	a	b	c
\rightarrow	ф	{p	{q	{r}
q	{p	{q	{r}	ф
*r	{q	{r}	ф	{p

- (ii) Design a DFA which accepts odd number of 1's and any number 0's. (6)
- 17. (a) (i) Construct the \mathcal{E} NFA for the regular expression (1+0)*1(1+0). (6)
 - (ii) Find the minimized state DFA for the given DFA. (10)

Or

(b) Obtain the regular expression that denotes the language accepted by, using the recursive relation. (16)

18. (a) (i) Let $S \to aB/bA$, $A \to aS/bAA/a$, $B \to bS/aBB/b$. Show that $S \Rightarrow aaabbabbba$ and construct a derivation tree whose yield is in "aaabbabbba". (8)

(ii) Construct a PDA for the language
$$L = \left\{ \frac{a^n b^{2n}}{n \ge 1} \right\}$$
. (8)

Or

	(b)	(i)	Convert the context free grammar $S \to aA$, $A \to aABC/bB/a$, $B \to b$, $C \to c$ into pushdown automata and process the string "aaabc". (8)		
		(ii)	Show that the following grammars are ambiguous.		
		()	$\{S \to aSbS/bSaS/\varepsilon\} \text{ and } \{S \to AB/aaB, A \to a/aA, B \to b\}.$ (8)		
19.	(a)	(i)	Begin with grammar $S \rightarrow 0A0/1B1/BB$, $A \rightarrow C$, $B \rightarrow S/A$, $C \rightarrow S/\varepsilon$ and simplificating safe order		
			 (1) eliminate ε production (2) eliminate unit production (3) eliminate useless symbols (4) put the resultant grammar in CNF. (8) 		
		(ii)	Show that the language $L = \{a^i \ b^j c^i d^j / i \ge 1 \text{ and } j \ge 1\}$ is not CFL. (8)		
		(11)			
			Or		
	(b)	(i)	Discuss the closure properties of CFL and prove any one of the property. (8)		
		(ii)	Explain the programming techniques of Turing machine. (8)		
20.	(a)	(i)	State post correspondence problem. Let $\sum = \{a, b\}^*$. Let A and B be lists of three strings as given below		
			$A = \{b, bab^3, ba\}$ $B = \{b^3, ba, a\}$. Does this instance of PCP have a solution? (6)		
		(ii)	Prove that for two recursive language L_1 and L_2 , their union and intersection is recursive. (10)		
			Or		
	(b)	(i)	Define universal language L_u . Prove that L_u is recursively enumerable. (8)		
	(0)				
		(ii)	State halting problem. Show that it is undecidable. (8)		