A	Reg	. No. :												
	[Quest	ion P	apei	r Co	de:	U2	M0	8					
	B.E./I	3.Tech. DI	EGREE	E EXA	AMIN	IATI	ON,	MA	Y 20)22				
				ond S			Í							
		Computer	r Scien	ce an	d Bus	sines	s Sys	stem	S					
	21UMA208- I	LINEAR A	LGEB	RA A	AND	NUN	ЛER	ICA	L MI	ETH	ODS	3		
			(Reg	ulatio	ns 20)21)								
Dur	ation: Three hours								M	axim	num:	100	Mar	ks
		A	Answer	ALL	Que	stion	ıS							
		PAR	2T A -	(10 x)	1 = 1	0 M	arks)							
1.	If the Eigen value of a	matrix A	are 1,2	,3 the	n the	Eige	en va	lue	of A	T			CO	1-App
	(a)2,4,6	(b) 1,4,9			(c)	2,8,1	,18 (d))1,2,	1,2,3			
2.	If $A = \begin{pmatrix} a & 1 \\ 3 & b \end{pmatrix}$ has Eigen values of 2,-2 then a and b are							СО	1-App					
	(a)1,-1	(b) -1,-1			(c)1	,1				(0	1)0,1	-		
3.	Solve the linear system $5x+4y=15,3x+7y=12$ gauss –Jordan method						CO2	2-App						
	(a) $\frac{57}{23}, \frac{15}{23}$	$(b)\frac{15}{23},\frac{15}{23}$	_		(c)-	$\frac{5}{23}$, $\frac{15}{23}$	3					(d)	$\frac{57}{23}$,	<u>5</u> 23
4.	By Gauss elimination	method, so	olve x	+ y =	= 2 ,	2 <i>x</i> -	+ 3 <i>y</i>	= 5	5				CO	2-App
	(a)1,2	(b) 1,1			(c)	1,0			(d) 0,	1			
5.	Gauss Seidel methodominant	d iteratior	n conv	erges	if	the o	coeff	iciei	nt m	atrix	is		C	O3- U
	(a) Squarely	(b) Logic	ally		(c)	Diag	onal	ly	(d) Sy	/mm	etric	ally	
6. The order of convergence of Newton's method is							C	O3- U						
	(a) 1	(b) 2			(c)	3			(d) 0				
7.	In a vector space V, known as	for every	$x, y \in I$	v the	n pro	pert	y x+	y=y-	+x is	}			(CO6-R

(a) Commutative

(b) Associative

(c) identity

(d) Inverse

The $\dim(\mathbb{R}^3)$ is 8. CO6-U (b) 2 (a) 1 (c) 3 (d) 09. In a vector space find $\|\alpha x\| =$ CO6-U (a) $|\alpha| + ||x||$ (b) $|\alpha| - ||x||$ (c) $|\alpha| |x|$ (d) $|\alpha|/|x|$ 10. The norm of (3,-4,0) is _____ CO6-R (a) 3 (b) -4(c) 0(d) 5PART - B (5 x 2= 10 Marks) 11. CO1-App Construct the matrix of the quadratic forms $2x_1x_2 + 2x_2x_3 - 2x_3x_1$ Apply Gauss – Jordan method solve the linear system x + y = 2; 2x + 3y = 5. CO2-App Explain Newton's backward interpolation formula CO6-R 14. CO4-App Find the matrix of $T:V_{2}(R) \to V_{3}(R)$ given by T(a,b) = (a+3b,0,2a-4b) for the standard Basis of $V_2(R)$ 15. Explain inner product space CO6-U PART - C (5 x 16= 80Marks) 16. (a) Using Cayley Hamilton theorem find A^4 and A^{-1} when CO1-App (16) $\mathbf{A} = \begin{bmatrix} -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$ Or (b) Apply the orthogonal transformation reduce the following quadratic CO1-(16)forms into canonical form $Q = 6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4zx$ find App its rank, index, signature and nature 17. (a) (i) Apply Gauss elimination method to solve 2x+y+4z=12,8x- CO2-App (8) 3y+2z=1,4x+11y-z=33(ii) Apply Gauss Jordan method to solve 10x+y+z=12, CO2-App (8)

Or

2x+10y+z=13, x+y+5z=7

(b)	Solve the following using triangularisation method $x+y+z=9,2x-$	CO2 -	(16)
	3y+4z=13,3x+4y+5z=40	App	

18. (a) (i) Using Lagrange's interpolation formula calculate the profit in CO3-App the year 2000 from the following data:

year	1997	1999	2001	2002
Profit (Rs.in lakhs)	43	65	159	248

(ii) Apply Newton Raphson Method Calculate a root of CO3-App (8) $x \log_{10} x - 1.2 = 0$ correct to 3 decimals.

Or

(b) Calculate the dominant Eigen value and corresponding Eigen CO3-App (16) vector of A. if

$$\mathbf{A} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

19. (a) Construct the linear transformation $T: V_3(R) \to V_3(R)$ determine by CO4-App (16) the matrix $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix}$ with respect the standard basis of $V_3(R)$

Or

- (b) Let $T: R^2 \to R^3$ be the linear mapping defined by CO4-App (16) $T(a_1 + a_2, a_1 a_2, a_2)$, Calculate nullity(T),rank(T), Also check the rank nullity theorem
- 20. (a) Apply Gram-Schmidth process to construct an orthonormal basis CO5-App (16) for $V_3(R)$ with standard inner product for the basis $\{V_1, V_2, V_3\}$ where $V_1 = (1,0,1), V_2 = (1,0,-1)$ and $V_3 = (0,3,4)$.

Or

(b) Show that $V_2(R)$ is an inner product space with inner product CO5-App (16) defined by $\langle x, y \rangle = x_1 y_1 + x_2 y_1 + x_1 y_2 + 4x_2 y_2$ where $x = (x_1, x_2)$ and $y = (y_1, y_2)$