,	\
	•
Γ	•

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

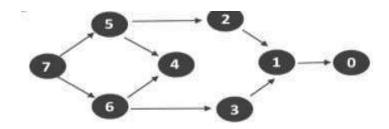
Question Paper Code: U2C05

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Second Semester

Computer Science and Business Systems

		21UCB205- Alg	orithms And Data Strue	ctures					
		(Re	gulations 2019)						
Dura	ntion: Three hours			Maximum: 1	00 Marks				
		Answ	er ALL Questions						
	PART A - $(10 \times 1 = 10 \text{ Marks})$								
1.	Which of the follo	owing is linear asym	ptotic notations		CO3- Ana				
	(a) O(1)	(b) O(logn)	(c) O(n)	(d) O(nlogn	(d) O(nlogn)				
2.	An algorithm sho	uld have	_ well-defined outputs	.	CO1- U				
	(a) 0	(b) 1	(c) 0 or more	(d) 1 or m	(d) 1 or more				
3.	Linked list is considered as an example of type of memory allocation.								
	(a) Dynamic	(b) Static	(c) Compile t	ime (d)Heap					
4.	If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?								
	(a) ABCD	(b) DCBA	(c) DCAB	(d) ABDC					
5.	Floyd Warshall Algorithm can be used for finding				CO1- R				
	(a) Single source	shortest path	(b)Topologica	(b)Topological sort					
	(c) Minimum spa	nning tree	(d) Transitive	(d) Transitive closure					
6.	The leaves of an		CO1-R						
	(a) operators	(b) operands	(c) null	(d)expressi	on				
7.	Which of the following is not the algorithm to find the minimum spanning tree of the given graph?								
	(a) Boruvka's alg	orithm	(b) Prim's algorith	(b) Prim's algorithm					
	(c) Kruskal's algo	orithm	(d) Bellman–Ford	(d) Bellman–Ford algorithm					


8.	The l	The Breadth First Search traversal of a graph will result into? CO1- U							
	(a) L	inked List	(b)Tree	(c) Graph	with back edges	(d)Arrays			
9.	What	t is the best case	e complexity	of selection	sort?		CO1- U		
	(a) O	(nlogn)	(b) O(logn)		(c) O(n)	(d) $O(n^2)$			
10.		ch of the follow l arrays?	ving sorting a	lgorithms i	s the fastest for sorting	(CO3- Ana		
	(a) Q	uick sort	(b) Insertion	sort	(c)Shell sort	(d) Heap sor	t		
			PAR	T - B (5 x 2)	2= 10 Marks)				
11.	Defin	ne Big Omega N	Notations.				CO1- U		
12.	List the applications of Stack. CO1- U								
13.	What is complete Binary Tree? CO1-								
14.	Compare DFS and BFS CO3- A								
15.	List (Collision Resolu	ution Techniq	ue.			CO1- U		
			PA	RT - C (5	x 16= 80 Marks)				
16.	(a)	Explain in deta	ail about Asyı	mptotic No	tations.	CO2- App	(16)		
				Or					
	(b)	Explain Rec analyze perfor		•	le and how would you	ı CO2-App	(16)		
17.	(a)	Singly Linke (i) Insert a	d List. It the End It the beginning		e following operations in	CO2- App	(16)		
	(b)	Develop a C p Stack with an (i) Push (ii) pop		plement the	e following operations in	CO2- App	(16)		
18.	(a)		•		following data 10, 5, 15 eletion of data 1, 15, 10		(16)		
				1 11					

- (b) Construct AVL Tree for the following data 3,2,1,4,5,6,7,16,15,14 with neat sketch.
- CO4- Ana
- (16)
- 19. (a) Explain the concept of Breadth First Search and Depth First CO2- App (16) Search with an Example.

Or

(b) Find topological ordering for the given graph.

- CO2- App
- (16)

20. (a) Develop a C Program to Perform Linear and Binary Search CO2- App with an appropriate Example (16)

Or

(b) Develop a C Program to Perform Bubble sort for the following CO2- App data 20, 30, 40,50,10 (16)