A		Reg. No. :								
		Question Paper Code: 94C05								
	RE /	R Tech DEGREE E	X A N	IINI A'	ΓΙΟΝ	ΜΔΝ	7 202	2		

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

Computer Science and Business Systems							
19UCB405 - Formal Languages And Automata Theory							
Б			(Regulat	ions 2019)		3.6 ·	0035.1
Dura	ation: Three hours					Maximum: 1	00 Marks
			Answer AI	LL Questions	S		
		PA	ART A - (10	x 1 = 10 Ma	ırks)		
1.	There are	tuples in f	inite state m	achine.			CO1- U
	(a) 4	(b) 5		(c) 6		(d)unlimi	ted
2.	Which of the Language: {0,01}	following	does not	represents	the give	n language?	CO2- App
	(a) 0+01	(b) {0}	U {01}	(c) {0}	U {0} {1}	(d) {0} ^	{01}
3.	The Grammar ca definition, what de			, ∑, p, S)	In the given	ven	CO1- U
(a) Accepting State (b) Starting Variable (c) Sensitive Grammar (d) None of these							e of these
4.	Which among the tuple?	following i	s not a part	of the Con	text free g	grammar	CO2- App
	(a) End symbol	(b) Star	t symbol	(c) Vari	iable	(d) Produ	ction
5.	Which of the oper	ations are eli	gible in PD	A ?			CO2- App
	(a) Push	(b) Delete		(c) Insert		(d) Add	
6.	which of the fo	llowing corr	rectly recog	nize the sy	/mbol ' -'	in	CO2- App
	(a) Moves	(b) transitio	n function	(c) or/not s	symbol (d) none of the r	mentioned
7.	The value of n if turing machine is defined using n-tuples CO1-						
	(a) 6	(b) 7	(c)	8	(d) 5		

8.	If T1 and T2 are two turing machines. The composite can be represented using the expression:					CO1- U		
	(a) T1T2	(b) T1 U T2		(c) T1	X T2	(d) None of the mentio	ned	
9.	Which of the prob	lems are unsolval	ole?				CO1- U	
	(a) Halting proble	m						
	(b) Boolean Satist	ability problem						
	(c) Halting problem & Boolean Satisfiability problem							
	(d) None of the m	entioned						
10.	If a problem has a	n algorithm to an	swer it	, we ca	ll it		CO1- U	
	(a) decidable	(b) solved	((c) reco	gnizable	(d) none of the me	ntioned	
		PART	-B (5	x 2= 1	0 Marks)			
11.	Define Finite Au	tomata and Transi	tion di	agram.			CO1- U	
12.	Define CNF with	an example					CO1- U	
13.	Define the instant	aneous description	n of PI	DΑ			CO1- U	
14.	Define Turing Ma	chine					CO1- U	
15.	Define Rice Theo	rem					CO1- U	
		PAR	T - C	(5 x 16	= 80 Mark	s)		
16.	` '	ne Epsilon NFA for bb and (0+1)*	(00+1	•	•	n CO2- App	(16)	
	(b) Construct D	FA for NFA-Eps a (Start) p {p}		ven bel	ow Epsilon φ	CO2- App	(16)	
		q {q}	{r}	ф	{p}			

17. (a) Construct the leftmost and Right most derivation and draw the CO2- App parse tree for 00101 and 1001

 $\{p\}$

 $\{q\}$

Given the productions are S $\to\!\!A1B^-$, A $\to\!\!0A/~\epsilon^-$, B->0B / 1B $/~\epsilon$ and Explain the Types of Grammar .

ф

 $\{r\}$

(Final)r

Or

	(b)	(i) Convert the following Grammar in to GNF	CO2- App	(12)
		S->AB A->BS / b		
		B->SA / a		
		(ii) Find CNF for the following Grammar	CO2- App	(4)
		S->aAbB	11	· /
		A->aA/a		
		B->bB / b		
18.	(a)	(i) Construct PDA equivalent for the following grammar given	CO2- App	(8)
		below $E \rightarrow E+E / E*E / a$		
		(ii) Show that the language $L=\{a^nb^nc^n d^n/n >=0\}$ is not a	CO2- App	(8)
		Context Free Language		
	(b)	Or (i) Construct PDA equivalent for the following grammar given	CO2- App	(8)
	(0)	below	СО2- Арр	(0)
		S-> aAA $A->aS/bS/a$		
		(ii) Construct PDA to accept the Language	CO2- App	(8)
		$L=\{WCW^R / W=\{0,1\}^*\}$		
19.	(a)	Explain Programming Techniques for Turing Machine	CO1- II	(16)
17.	(u)	Construction in Detail.		(10)
		Or		
	(b)	Explain Multi head and Multi tape Turing machine in detail.	CO1- U	(16)
•			G01 II	(4.6)
20.	(a)	Explain Universal Turing Machine in detail. Or	CO1- U	(16)
	(b)	Explain applications of Finite Automata in detail.	CO1- U	(16)
	(5)			(10)