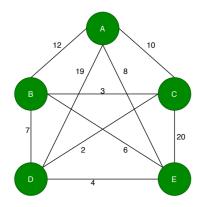
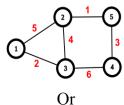
Λ	
\mathcal{H}	ı

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

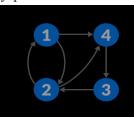
Question Paper Code: 94C02


B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester


		Computer	Science and Bus	siness Systems		
	19UCB40	3 - Introduction	on To Design A	nd Analysis Of A	Algorithms	
			(Regulations 20)19)		
Dur	ation: Three hours				Maximum: 100	Marks
		Aı	nswer ALL Que	stions		
		PART	$A - (10 \times 1 = 1)$	0 Marks)		
1.	What is an algorithm	n?				CO1- R
	(a) A flowchart		(b) A flowcha	art or pseudocod	e	
	(c) A decision		(d) Step by st	tep instructions u	used to solve a pro	blem
2.	2. In a flowchart, an input or output instruction is represented by?					CO1- R
	(a) A diamond	(b) Rectan	gle (c)	Parallelogram	(d) A circle	
3.	3. The approach of dynamic programming is similar to					CO1- R
	(a) Parsing		(b)	Hash table		
	(c) Divide and Cond	quer algorithm	(d)	Greedy algorith	n	
4.	4. What is the time complexity of the brute force algorithm used to solve the Knapsack problem?					CO1- R
	(a) O(n) (b)O(n!)	(c)O(2n)	(d) O(n2)	
5.	Which of the follow Knapsack problem	_	can be used to	solve the		CO1- R
	(a) Brute force algor	rithm	(b)Recursion			
	(c) Dynamic Progra	mming	(d) Brute force	, Recursion and	Dynamic Progran	nming
6.	The Knapsack prob	lem is an exan	nple of			CO1- R
	(a) Divide and conq	uer algorithm		(b) Greedy alg	gorithm	
	(c)1D Dynamic Pro	gramming		(d) 2D Dynam	ic Programming	

7.	In si	mplex method, the feasible basic so	method, the feasible basic solution must satisfy the					
	(a) n	on negativity constraint	(b) Negativity constraint					
	(c) E	Basic constraint	(d) Common constraint					
8.	How	many constraints does flow have?			CO1- R			
	(a) C	One (b) Two	(c) Three	(d) Four				
9.	Whi	ch of the problems cannot be solved	d by backtracking method?	C	O3- Ana			
	(a) n	-queen problem	(b) subset sum problem					
	(c) H	Iamiltonian circuit problem	(d) travelling salesman prob	lem				
10.	In ho	ow many directions do queens attac	k each other?	C	CO3- Ana			
	(a) 1	(b)2	(c)3	(d) 4				
		PART – B	$(5 \times 2 = 10 \text{ Marks})$					
11.	Defi	ne Little Omega.			CO1- U			
12.	. Define brute force method							
13.	. Differentiate prim's Algorithm and Kruskal's Algorithm							
14.	. Define Stable Marriage Problem							
15.	Wha grap	ndirected	CO1- U					
		PART –	C (5 x 16= 80 Marks)					
16.	(a)	(i) Discuss important problem Algorithm Analysis.		**	(8)			
		(ii) Elaborate Asymptotic analy example	sis of an algorithm with an	CO2- App	(8)			
	4.	Or		G02 4	(1.0)			
	(b)	Illustrate briefly on Big oh No Theta Notations. Depict the same	-	CO2- App	(16)			
17.	(a)	Explain in detail merge sort. Il numeric example. Provide comple Or		CO3- Ana	(16)			


(b) Determine the shortest route using travelling sales man CO3-Ana problem (16)

18. (a) Using Prim's algorithm, determine minimum cost spanning CO4- Ana tree for the weighted graph shown below. (16)

(b) Using Floyd Warshall Algorithm, find the shortest path CO4- Ana distance between every pair of vertices. (16)

19. (a) Explain the maximum flow problem algorithm and prove the CO2-App max Flow min cut theorem (16)

Or

- (b) What is bipartite graph? Is the subset of bipartite graph is CO2-App bipartite? Outline with example (16)
- 20. (a) What is Backtracking? Draw the state space tree for 4-queens CO3- D problem. And Write algorithms to check whether kth queen can be placed successfully and to place all N queens on the chessboard.

Or

(b) Design an algorithm for subset sum and explain with an CO3-D (16) example.