A
\mathbf{A}

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 91003

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

First Semester

Civil Engineering

19UPH103- ENGINEERING PHYSICS (Common to ALL branches) (Regulation 2019) Duration: Three hours Maximum: 100 Marks Answer ALL questions PART A - $(10 \times 1 = 10 \text{ Marks})$ The coordination number for FCC lattice is CO1-R 1. (c) 8 (a) 12 (b) 6 (d) 24The number of atoms per unit cell for a simple cubic crystal structure is CO1-R (a) 4 (b) 1 (c) 2(d) 6Atomic packing factor for BCC crystal lattice is CO1-R (b) 52% (c) 74% (d) 68% (a) 32% If N₁ and N₂ are the number of atoms in ground state and excited state CO2-R 4. respectively, then in population inversion (c) $N_1 = N_2$ (a) $N_1 < N_2$ (b) $N_1 > N_2$ (d) $N_1 > 2N_2$ A hologram contains the information about CO2-R (a) Amplitude of the object (b) Phase of the object (c) Both amplitude and phase of the object (d) None of these

If λ_m is the wavelength corresponding to maximum energy and T is the

(a) λ_m T = constant (b) λ_m /T = constant (c) λ_m T $\frac{1}{2}$ = constant (d) λ_m / T $\frac{1}{2}$ = constant

absolute temperature, then according to Wien's displacement law,

CO3-R

1.	radiation and matter is not continuous but it is limited to the integral multiple of							O3- K
	(a) 1	/ hv	(b) h/v	(c) v/h		(d) h	v	
8.			mass m is moving wited with the matter wave	•	deBroglie		C	O3- R
	(a) λ	L = h/mv	(b) $\lambda = h/mv^2$	(c) $\lambda = h^2/mv$		(d) λ =	= mv/h	l
9.	The	modulus of elas	ticity is				C	O4- R
	(a) S	Stress × Strain	(b) Stress / Strain (c)	Strain / Stress	(d) Stress>	< Youn	g's mo	dulus
10.	The	ratio of lateral s	train to linear strain is				C	O4- R
	(a) E	Elastic limit ((b) Young's modulus	(c) Rigidity mo	dulus	(d) Po	oisson'	s ratio
			PART – B (5 x	2= 10 Marks)				
11.			Indices of a plane wl z axes respectively.	nich cuts the inte	rcepts of 2	, 3, 4	CO1-	App
12.							CO1- R	
13.	. What is holography?						CO2- R	
14.	. Mention any two physical significance of the wave function ψ .						CO3- R	
15.	State	e Hooke's law.					CO4-	R
			PART - C (5	x 16= 80 Marks)				
16.	(a)	` '	elation between interpla a plane whose Miller is			CO1-	U	(8)
		(ii) Show that to	he c/a ratio for an ideal	HCP structure is	$\sqrt{8/3}$	CO1-	U	(8)
			Or					
	(b)	Explain with ne occur in crystal	ecessary diagram point s.	defects and line d	efects that	CO1-	U	(16)
17.	(a)		ence of stimulated emilace using Einstein's th		n for laser	CO2-	U	(16)
			Or					
	(b)	Describe the co	onstruction and working	of CO ₂ laser.		CO2-	U	(16)
18.	(a)	(i) Show that th	e atomic packing factor	r for FCC is 74%.		CO1-	U	(8)
		(ii) Derive Schr	rodinger's time indepen	dent wave equation	on.	CO3-	U	(8)

	(b)	(i) Explain surface defects in crystals.	CO1- U	(8)
		(ii) Derive Schrodinger's time dependent wave equation.	CO3- U	(8)
19.	(a)	Show that Compton shift in wavelength depends on scattering angle using Compton effect.	CO3- U	(16)
		Or		
	(b)	Solve Schrodinger's wave equation for a particle lying in a one dimensional box of length 'a'.	CO3- U	(16)
20.	(a)	What is a cantilever? Derive an expression to find the depression produced in a cantilever fixed at one end and loaded at the other end.	CO4- U	(16)
		Or		
	(b)	(i) Draw the stress strain curve for a ductile material and explain	CO4- U	(8)
		it.		
		(ii) Discuss the factors affecting elasticity	CO4- II	(8)