Reg. No. :									
------------	--	--	--	--	--	--	--	--	--

Question Paper Code:91006

B.E./B.Tech. DEGREE EXAMINATION, MAY 2022

First Semester

Civil Engineering

19UCY106 - CHEMISTRY FOR CIVIL ENGINEERING

(Regulation 2019)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1.	Temporary hardness of water is caused by the presence of				
	(a) Chlorides of calcium and magnesium	(b) Sulfates of calcium and magn	esium		
	(d) Bicarbonates of calcium and magnesium	(c) Carbonates of sodium and potassium			
2.	Zeolite softening process removes		CO1- R		
	(a) only temporary hardness of water				
	(b) only permanent hardness of water				
	(c) both temporary and permanent hardness of water				
	(d) the dissolved gases in permanent hard water				
3.	ermanent hardness of water may be softened by passing it through		CO1- R		
	(a) Sodium silicate	(b) Sodium bicarbonate			
	(c) Sodium hexametaphosphate	(d) Sodium phosphate			
4.	tich type of chemical reaction is observed at cathode, in electrochemical Corrosion?		CO3- U		
	(a) Reduction reaction	(b) Oxidation reaction			
	(c) Pericyclic reaction	(d) None of the above			

5.	Which of the following is an example of corrosion?			CO3- U			
	(a) Rusting of iron (b) Tarnishing of silv		r				
	(c)Liquefaction of a	mmonia	(d) Rusting of iron and	(d) Rusting of iron and tarnishing of silver			
6.	Select the incorrect	Select the incorrect statement from the following option					
	(a) Replacement of corroded equipment is time-consuming						
	(b) Corrosion increases the electrical conductivity of metals						
	(c) Corrosion causes contamination of product						
	(d) Corrosion causes leakage of toxic liquid or gases						
7.	What is the unit of absorbance which can be derived from Beer CO2-R Lambert's law						
	(a) $L \mod^{-1} \operatorname{cm}^{-1}$	(b) L $gm^{-1} cm^{-1}$	(c) cm	(d) No unit			
8.	Which of the following wavelength ranges is associated with UV CO2- R spectroscopy?						
	(a) 0.8 - 500µm	(b) 400 - 100nm	(c) 380 - 750nm	(d) 0.01 - 10nm			
9.	What is the average	CO4- R					
	(a) 15 microns	(b) 45 microns	(d) 100 microns				
10.	Firing temperature of	CO4- R					
	(a) 800-1000	(b) 1000-1200	(c) 1600-1800	(d) 2400-2600			
		PART - B(5)	x 2= 10 Marks)				
11.	Differentiate scale a	CO1- Ana					
12.	Write the reactions	CO1- R					
13.	Analyze the type of corrosion occurs in wire fence.			CO2- Ana			
14.	Define Beer-Lamberts law			CO3- R			
15.	Write the composition of portland cement.			CO4- R			
PART – C (5 x 16= 80 Marks)							
16.	(a) Describe the internal conditioning of water. Explain the different CO1- U (16) types with the reaction involved in it.						
Or							

(b) What is the principle of EDTA? Describe the estimation of CO1-U (16) hardness of water by EDTA method.

17. (a) What are ion exchange resins? Discuss their applications in water- CO1- U (16) softening. How spent resins are regenerated?

Or

(b) (i) Explain reverse osmosis method of desalination of brackish CO1-U (8) water with advantages.

(ii) Calculate the carbonate and non carbonate hardness of a sample CO1-U (8) of water containing the dissolved salts as given below in mgs/ lit Mg $(\text{HCO}_3)_2 = 7.3$, Ca $(\text{HCO}_3)_2 = 40.5$, CaSo₄ = 13.6 , Mgcl₂ = 21.75 and Nacl = 50.

18. (a) What are paints? Explain its constituents with its functions. CO2- U (16)

Or

- (b) Define electroplating. Explain the process involved in the CO2-U (16) electroplating of gold on other surfaces.
- 19. (a) Explain the principle and working of UV-Visible spectroscopy and CO3- U (16) discuss any four applications.

Or

- (b) What is gas chromatography? Explain how this technique is used in CO3- U (16) the separation of constituents in compounds.
- 20. (a) Explain the process involved in the manufacturing of magnesite CO4-U (16) and zirconia brick

Or

(b) Explain the different steps involved in the manufacturing of CO4-U (16) portland cement.