Computer Science and Engineering									
15UCY105 - APPLIED CHEMISTRY									
(Common to EEE, ECE, EIE, IT and Biomedical Engineering)									
(Regulation 2015)									
0 Marks									
Answer ALL Questions									
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$									
CO1-]									
(b) $sp^2-sp^2 < sp^3-sp^3 < sp-sp$									
(d) $sp-sp < sp^2-sp^2 < sp^3-sp^3$									
CO1-1									
CO2- 1									
ly									
CO2- 1									
$E^{-}Cr_{2}O_{7}^{2-}/Cr^{3+} = 1.33V, E^{-}Cr^{3+}/Cr = -0.74V, E^{-}Cl_{2}/Cl^{-} = 1.36V, E^{-}MnO_{4}^{-}/Mn^{2+} = 1.51V.$									
CO3-]									
ole cells									
CO3-]									
]									

7.	Wh	at is the range of v	isible region?			CO4- R
7.		200-400 nm	(b) 400-1000 nm	(c) 400-850	nm (d) 400-73	
8.				highest energy transit		CO4- R
0.		n to σ^*	(b) n to π^*	(c) σ to σ^*	(d) π to π	
9.				er is referred to as its	(d) // to //	CO5- R
).		functionality	(b) tacticity	() $() $ $()$	(d) degree of polymeri	
10.		2	de from acrylonitri		(a) accret of polyment	CO5- R
101		Rayon	(b) Acrylic fibre	(c) Nylon	(d) PVC	000 11
	()			B (5 x 2= 10 Marks)		
11.	Dist	inguish between i		nd covalent compound	ls.	CO1- R
12.		-	-	-	the mechanism (i) Iron	CO2- R
		• • • •		stainless steel parts		
13.	Dif	ferentiate primary	cells and secondar	y cells		CO3- R
14.						
	concentration of the solution, given extinction Co efficient $\in 4,000 \text{ dm}^3 \text{mol}^{-1} \text{ cm}^{-1}$					
15.	Give	e the synthesis an	d uses of Nylon 66			CO5- R
				$-C (5 \times 16 = 80 \text{ Mark})$,	
16.	6. (a) What do you mean by hybridization? Explain with diagram the CO1- U formation of Oxygen (O ₂) and Hydrogen (H ₂) using molecular orbital					(16)
		theory.	gen (O ₂) and Hydr	logen (112) using more		
			0			
	(b)	Explain the cor molecule using N		in a Homo and het	ero diatomic CO1-U	(16)
		molecule using r	ine incory			
17.	(a)			nt of single electrod	e potentially CO2-U	(16)
		Poggendroff's n	o O	r		
	(b)				ng the metal CO2-U	(16)
		and the environn	nent? Discuss in de	tail.		
18.	(a)	(i) Explain H ₂ -O	2 fuel cell. Give its	merits and demerits	CO3- U	(8)
		(ii) What are che	mically modified e	electrodes? Explain the	eir types. CO3-U	(8)
			0	r		

	(b)	Describe the construction and working of lead acid storage battery. Compare the lead acid storage battery with that of the fuel cell.	CO3- U	(16)
19.	(a)	Summarize the working principles of thermo gravimetric analysis Or	CO4- U	(16)
	(b)	(i) Explain with a schematic diagram the working of Differential Scanning Calorimetry (DSC). List the merits of DSC.	CO4- U	(8)
		(ii) Explain the thermo gravimetric analysis of any one chemical compound with neat block diagram.	CO4- U	(8)
20.	(a)	(i) Discuss the methods available in chemical and electrochemical doping of conducting polymer in detail	CO5- U	(8)
		(ii) What is OLED? Explain its structure, advantages and disadvantages of OLED.	CO5- U	(8)
		Or		
	(b)	What are liquid crystals? Discuss the applications of liquid crystals in	CO5- U	(16)

the field of electronics.

##