A
/ 🕦

not possible

(a) Increase

possible

(b) Decrease

6. The entropy of an isolated system can never ____

Reg. No.:					

CO₃-R

(d) None of the above

Question Paper Code: 51004

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

First Semester

Mechanical Engineering

15UCY104 - ENGINEERING CHEMISTRY

		(Common to Ch	emical Engineering)		
		(Regul	ation 2015)		
Dur	ation: Three hours			Maximum: 100 Mar	ks
		Answer A	LL Questions		
		PART A - (10	$0 \times 1 = 10 \text{ Marks}$		
1.	Bond order is related	to dissociation energ	gy by which of the follow	wing? CO1-	- R
	(a) Directly proportion	onal	(b) Inversely propor	tional	
	(c) Constant		(d) none of these		
2.	Linear geometry is so	een with which of the	e following	CO1-	- R
	(a) H_2S	(b) H ₂ O	(c) CH ₄	(d) C_2H_2	
3.	Daniel cell is an exar	mple of		CO2-	R
	(a) primary cell		(b) secondary cell		
	(c) Constant cell		(d) fuel cell		
4.	Which of the followorrosion?	wing does not pror	note the differential ae	ration CO2-	- R
	(a) Accumulation of	dirt	(b) Partially coverin	g metals	
	(c) Wire fence kind of	of structures	(d) Accumulation of	oxygen	
5.	If the cyclic integral	of dQ/T is zero then	the cycle is	CO3-	· R
	(a) irreversible but	(b) irreversible b	out (c) impossible	(d) reversible	

(c) Be zero

7.	Wat	ter gas is					(CO4- R
	(a) ($CO + H_2O$	(b) C0	H_2	$(c) CO_2 + N_2$	(d) CO ₂ +	N_2O	
8.		raw material psch process is	used for	synthesizing	petrol in Fischer-			CO4-R
	(a) l	kerosene		(b) Diesel	(c) coal	(d)	LPG	
9.	Bras	ss alloy containi	ng mainly	I			(CO5- R
	(a) (Cu and Zn	(b) Cu	and Sn	(c) Zn and Pb	(d) Cu and	Fe	
10.	Whi	ich of the follow	ing is an	example of fer	rous alloy		(CO5- R
	(a) a	alnico	(b) bro	onze	(c) brass	(d) bi	illon	
			I	PART – B (5 x	2= 10 Marks)			
11.		v do bonding a ergies the spatial		ū	cular orbitals differ density?	with respect	to	CO1- R
12.	Suggest the most suitable methods for protecting the following metals from corrosion a) iron rod used in concrete b)bolt							
13.	Wri	te Gibb's-Helm	holtz equa	ation			(CO3- R
14.	What is a flue gas?							
15.	Wha	at are composite	es? Give th	ne advantageor	us characteristics of c	omposites.	(CO5- R
				PART – C (5	5 x 16= 80 Marks)			
16.	(a)	(i) Compare th N_2^+	e stability	and bond ord	er of CO ⁺ , CO, NO, 1	NO ⁺ , CO	1- App	(8)
		(ii) Predict the Be in BeF ₂	hybridiza	tion of S in SI	F_6 , Xe in Xe F_4 , N in N	NO ₃ , CO	1- App	(8)
	(b)	(i) Evaloin the	lattice on	Or thelmy of NoC	luging Dorn Hober o	volo CO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(9)
	(b)	· · ·			l using Born-Haber c		1- App	(8)
		(II) What is Pa	uii s exciu	ision principle	? Explain in detail.	CO	1- App	(8)
17.	(a)	(i) What are th	e factors i	nfluencing the	e rate of corrosion?	CO	2- U	(8)
		(ii) What is p suitable examp		ve their const	ituents and function	s with CO	2- U	(8)
	(1.)			Or		GO.		(0)
	(b)	(i) Calculate the Pt/Br ₂ (g)(0.1 a			1 atm)/Pt at 298 K	CO	2- Ana	(8)
		(ii) Describe th		, , , ,	ŕ	CO	2- Ana	(8)

18.	(a)	(i) Derive the Gibbs-Helmholtz equation and mention its significance.	CO3- Ana	(8)
		(ii) State the phase rule. Explain the terms involved in it with suitable examples	CO3- Ana	(8)
		Or		
	(b)	(i) Derive an expression for the entropy change for an ideal gas.	CO3- U	(8)
		(ii) Gibbs free energy of a reaction at 300 K and 310 K are	CO3- U	(8)
		-29kcal and -29.5 kcal respectively. Determine its ΔH and ΔS at 300 K.		
19.	(a)	(i) Describe the manufacture of Petrol by Bergius process.	CO4- U	(8)
	. ,	(ii) Describe the manufacture of water gas with neat diagram.	CO4- U	(8)
		Or		` '
	(b)	(i) How can you analyze flue gas by Orsat apparatus?	CO4- U	(8)
		(ii) Differentiate between NCV and GCV	CO4- U	(8)
				,
20.	(a)	(i) What are non-ferrous alloys? Explain the compositions, properties and uses of any two alloys in detail.	CO5- U	(8)
		(ii) Explain fibre reinforced composites	CO5- U	(8)
		Or		
	(b)	(i) State classification of composite and the need for composite.	CO5- U	(8)
		(ii) Categorize the different heat treatment of steels.	CO5- U	(8)