Question Paper Code: 41002

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

First Semester

Civil Engineering

14UMA102 - ENGINEERING MATHEMATICS - I

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 1 = 10 Marks)

1. If 1 and 2 are the eigen values of $2x^2$ matrix A. what are the eigen values of A^2 .

(d) 2 & 3 (a) 1 & 2 (b) 1 & 4 (c) 2 & 4 2. $\begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} =$ (b) 1 (a) 0 (c) 2(d) 3 3. Examine the nature of the series $1 + 2 + 3 + 4 + \dots + n + \dots \infty$ (a) divergent (b) convergent (c) oscillatory (d) linear 4. The geometric series $1 + r + r^2 + r^3 + \dots + r^n + \dots$ converges if (b) $r \ge 1$ (c) r > 1(d) r < 1(a) $r \leq l$

5. What is the radius of curvature at (3, 4) on the curve $x^2 + y^2 = 25$? (a) 5 (b) -5 (c) 25 (d) -25

The envelope of the family of straight lines $y = mx + \frac{1}{m}$, m being the parameter is 6. (a) $y^2 = -4x$ (b) $x^2 = 4y$ (c) $v^2 = 4x$ (d) $x^2 = -4v$ Let *u* and *v* be functions of *x*, *y* and $u = e^{v}$. Then *u* and *v* are 7. (a) Functionally dependent (b) Functionally independent (c) Functionally linear (d) Functionally non-linear 8. A stationary point of f(x, y) at which f(x, y) has neither a maximum nor a minimum is called (a) Extreme point (b) Max-Min point (d) Nothing can be said (c) Saddle point 9. $\int \int \int xyz dx dy dz$ (b) $\frac{9}{4}$ (c) $\frac{9}{2}$ (d) $\frac{1}{0}$ (a) 9 10. By changing the order of integration, we get $\int_{0}^{1} \int_{0}^{y} f(x, y) dx dy =$ $(a) \int_{0}^{1} \int_{0}^{x} f(x, y) dy dx \qquad (b) \int_{0}^{1} \int_{x}^{1} f(x, y) dy dx \qquad (c) \int_{0}^{1} \int_{y}^{1} f(x, y) dx dy \qquad (d) \int_{0}^{1} \int_{x}^{0} f(x, y) dy dx$ PART - B ($5 \times 2 = 10$ Marks) 11. Verify Cayley-Hamilton theorem for the matrix $\begin{bmatrix} 5 & 3 \\ 1 & 3 \end{bmatrix}$.

- 12. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!2^n}{n^n}$ by D'Alembert's Ratio test.
- 13. Find the radius of curvature of the curve $y = e^x$ at x = 0.
- 14. If $x = u^2 v^2$ and y = 2uv, find the Jacobian of x and y with respect to u and v.
- 15. Evaluate $\int_0^2 \int_0^{\pi} r \sin^2 \theta \ d\theta \ dr$.

PART - C ($5 \times 16 = 80$ Marks)

16. (a) Diagonalize the matrix by orthogonal transformation $\begin{vmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{vmatrix}$. (16)

Or

- (b) Reduce the Q.F $x^2 + y^2 + z^2 2xy 2yz 2zx$ in to a canonical form by an orthogonal transformation. (16)
- 17. (a) (i) Show that the sum of the series $\frac{15}{16} + \frac{15}{16} \times \frac{21}{24} + \frac{15}{16} \times \frac{21}{24} \times \frac{27}{32} + \dots = \frac{47}{9}$. (8)

(ii) Show that the series $1 - 2 + 3 - 4 + ... \infty$ oscillates infinitely. (8)

Or

(b) Prove that if b-1 > a > 0, the series $1 + \frac{a}{b} + \frac{a(a+1)}{b(b+1)} + \frac{a(a+1)(a+2)}{b(b+1)(b+2)} + \dots$ converges.

(16)

18. (a) (i) Find the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$ (8)

(ii) Find the evolute of the parabola $y^2 = 4ax$. (8)

Or

(b) (i) Find the evolute of the curve $x = a(\cos t + t \sin t)$, $y = a(\sin t - t \cos t)$. (8)

- (ii) Find the envelope of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a and b are connected by the relation $a^2 + b^2 = c^2$, c being a constant. (8)
- 19. (a) (i) Find the Taylor's series of $e^x log(1 + y)$ in powers of x and y up to third degree terms. (8)
 - (ii) Find the maximum value of $f(x, y) = \sin x \sin y \sin(x + y)$; $0 \le x, y < \pi$. (8)

3

41002

(b) (i) If
$$g(x, y) = \psi(u, v)$$
, where $u = x^2 - y^2$, $v = 2xy$, then prove that

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 4(x^2 + y^2) \left(\frac{\partial^2 \psi}{\partial u^2} + \frac{\partial^2 \psi}{\partial v^2} \right).$$

(ii) Find the Jacobian of y_1, y_2, y_3 with respect to x_1, x_2, x_3 where $y_1 = \frac{x_2 x_3}{x_1}, y_2 = \frac{x_1 x_3}{x_2},$ $y_3 = \frac{x_1 x_2}{x_3}.$ (8)

20. (a) (i) Change the order of integration and evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$. (8)

(ii) Evaluate
$$\iint \frac{dx \, dy \, dz}{\sqrt{1 - x^2 - y^2 - z^2}}$$
 for all positive values of *x*, *y*, *z* for which the

integral is real.

Or

(b) (i) Evaluate $\iint_{S} z^{3} dS$, where is S is the positive octant of the surface of the sphere. (8)

(ii) Evaluate $\iiint_{v} xyz dx dy dz$, where V is the volume of space inside the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (8)

(8)

(8)