Reg. No. :

Question Paper Code: 93025

B.E./B.Tech. DEGREE EXAMINATION, MAY 2022

Third Semester

Civil Engineering

19UMA325- Probability, Statistics and Transform Techniques

(Regulation 2019)

Duration: Three hours

Maximum: 100 Marks

Answer All Questions

PART A - (10x 1 = 10 Marks)

1. If X is the discrete random variable having the probability density function, CO6-App then Calculate k.

	Х	-1	0	1	
	P(X)	k	2k	3k	
(a) 1/6	(b)-1/6		(c)-1	(d) 1	

- 2. A random variable X follows an exponential distribution with parameter CO6- App $\lambda = 1/5$ then find the mean value .
 - (a) 1/4 (b) 1/2 (c) 3/4 (d) 1
- Large sample size is CO6- App 3. (c) < 30(a) 30 (b) > 30(d) none of these 4. For a sample of size n=25, the degrees of freedom for the sample size is CO6- App (b) 22 (c)20 (a) 24 (d) 25 If a function f(x) is even, its Fourier expansion contains only ------ terms CO6- App 5. (a) Sine (b) Cosine (c) tan (d) None of these If f(x + t) = f(x), then f(x) is said to be an CO6- App 6. (a) Odd Function (b) Even Function (c) Periodic function (d) Self Reciprocal If F[f(x)] = f(s) then the function is said to be CO6- App 7. (b)Even (c)Self Reciprocal (d) Periodic (a) Odd

A

- 8. If F[f(x)] = f(s) then F[f(ax)] =_____ CO4- App (a) $\frac{1}{-a}F\left(\frac{s}{a}\right)$ (b) $\frac{1}{a}F\left(\frac{s}{a}\right)$ (c) $\frac{1}{|\mathbf{a}|}F\left(\frac{s}{a}\right)$ (d) $\frac{1}{s}F\left(\frac{s}{a}\right)$ 9. The Z transform of a unit step function is
- 9. The Z transform of a unit step function is _____. CO6- App (a) $\log(\frac{z}{z+1})$ (b) $\frac{z}{z+1}$ (c) $\log(\frac{z}{z-1})$ (d) $\frac{z}{z-1}$
- 10. The Z transform of $n.a^n$
 - (a) $\frac{2z}{(z-2)^2}$ (b) $\frac{z}{(z-2)^2}$ (c) $\frac{az}{(z-a)^2}$ (d) $\frac{z}{(z+2)^2}$

$$PART - B (5 x 2 = 10 Marks)$$

- 11. A Continuous random variable with density function is given by CO1-App $f(x) = 6x(1-x), 0 \le x \le 1$ Check the above is PDF or not.
- 12. If A,B are two independent attributes and if (A) = 36, (B) = 25 and N = 100 CO2- App then find (AB).
- 13. Find b_n in the Fourier series of $f(x) = |\cos x|$ in $(0,2\pi)$ CO3-U
- 14. Find the Fourier sine transform of $\frac{1}{x}$ CO4- App
- 15. State Initial and final value Theorem on Z Transform

16. (a) A RV X has the following distribution

- 0 1 2 3 4 5 7 Х 6 8 5a P(X)a 3a 7a 9a 11a 13a 15a 17a Calculate the value of 'a' (i)
 - (ii) Calculate P(X < 3), $P(X \ge 3)$ & P(1 < X < 5)
 - (iii) Calculate the cumulative function of X

Or

- (b) (i) Find the mgf of the random variable X whose probability CO1 Ana (8) density function is given by $f(x) = 2e^{-2x}$; $x \ge 0$ and hence find it's mean and variance.
 - (ii) A random variable X has density function given by CO1-Ana (8)

$$f(x) = \begin{cases} \frac{1}{k}, & \text{for } 0 < x < k \\ 0, & \text{otherwise} \end{cases}$$

Find (i). M.G.F (ii) Mean (iii) Variance

CO1- App (16)

CO6-U

CO5- App

17. (a) (i) A company keeps records of accidents. During a recent safety CO2 -Ana (8) review, a random sample of 60 accidents was selected and classifields by the day of the week on which they occurred.

Days	Mon	Tue	Wed	Thu	Fri
No.of. accidents	8	12	9	14	17

Table value of $\chi^2 = 9.488$

(ii) 1000 students at college level were according to their I.Q and CO2 -Ana(8) their economic conditions. What conclusion can you draw the following data

Economic	I.Q level					
condition	High	Low				
Rich	460	140				
Poor	240	160				
Or						

(b) (i) Two horses A and B were tested according to time (in seconds) CO2 -Ana (8) to run on a particular track with the following results:

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Test whether horse A is running faster than B at 5% level.

(ii) The following table gives the values of protein from CO2 -Ana (8)Kangeyam cow's milk and buffalo's milk. Examine if these difference are significant.

Cow's	1.90	1.95	2.00	2.02	1.85	1.80
milk						
Buffalo's	2.12	2.00	2.20	2.45	2.20	2.10
milk						

Table value of t at 5% = 2.228

18. (a) (i) Express $f(x) = \frac{1}{2}(\pi - x)$ as Fourier series of period 2π in the CO3- App (8) interval $0 \le x \le 2\pi$ and hence deduce the sum of series $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ (ii) Find the Fourier series of $f(x) = x^2$ in $0 \le x \le 24$ CO3- App (8)

3

(ii) Find the Fourier series of $f(x) = x^2$ in 0 < x < 2i. CO3- App (8)

(b) (i) Calculate the Fourier series expansion for $f(x) = x + x^2$ in CO3- App (8) (- π , π) (ii) Find the Half range Sine Series of f(x) = x in $(0, \pi)$ CO3- App (8)

19. (a) Show that the Fourier transform of CO4-App (16)

$$f(x) = \begin{cases} a^{2} - x^{2} & |x| < a \\ 0 & |x| > a \end{cases} \text{ is } 2\sqrt{\frac{2}{\pi}} \left[\frac{\sin sa - sa \cos sa}{s^{3}}\right] \text{ Hence} \end{cases}$$

$$deduce (i) \int_{0}^{\infty} \frac{\sin t - t \cos t}{t^{3}} dt = \frac{\pi}{4} (ii) \int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^{3}}\right)^{2} dt = \frac{\pi}{15}$$
Or
$$(b) (i) \text{ Evaluate } \int_{0}^{\infty} \frac{dx}{(x^{2} + a^{2})^{2}} \text{ CO4 - App (8)}$$

$$(ii) \text{ Evaluate } \int_{0}^{\infty} \frac{dx}{(x^{2} + 9)(x^{2} + 4)} \text{ CO4 - App (8)}$$
20. (a) (i) Using convolution theorem find
$$z^{-1} \left(\frac{8z^{2}}{(2z - 1)(4z - 1)}\right)$$

$$(ii) \text{ Solve } y_{s+2} + 6y_{s+1} + 9y_{s} = 2^{s} \text{ given } y_{0} = y_{1} = 0$$
Or
$$(b) (i) \text{ Evaluate } Z[r^{n}\cos n\theta] \text{ and } Z[r^{n}\sin n\theta] \text{ CO5- App (8)}$$

(ii) Using convolution theorem find
$$z^{-1}\left(\frac{z^2}{(z-1)(z-3)}\right)$$
 CO5- App (8)