A		Reg	. No. :]
Question Paper Code: 93105														
B.E. / B.Tech DEGREE EXAMINATION, MAY 2022														
Third Semester														
Civil Engineering														
19UCE305 FLUID MECHANICS														
(Regulation 2019)														
Dura	ation: Three hours								М	axin	num:	100	Mar	ks
Answer ALL Questions														
PART A - $(5 \times 1 = 5 \text{ Marks})$														
1.	Property of fluid b	y which its own n	nolecules	are a	attrac	ted is	s calle	ed					CO	1 - U
	(a) Adhesion (b) Cohesion (c) Viscosity (d) Compressibility						/							
2.	Bernoulli's theorem deals with the law of conservation of									CO	1 - U			
	(a) Mass (b) Momentum (c) Energy				(d) None of the above			oove						
3.	The unit of physical quantity which does not depend on the unit of any other CO3- U physical quantity is called as								3- U					
	(a) independent dimension			(b) fundamental dimension										
	(c) core dimension			(d) none of the above										
4.	A liquid flows through pipes 1 and 2 with the same flow velocity. If the ratio of their pipe diameters d1 : d2 be 3:2, what will be the ratio of the head loss in the two pipes?							Ana						
	(a) 3:2	(b) 9:4	(c) 2:	3				(0	d) 4:9)				
5.	The boundary laye	r separation takes	place if										CO	1 - U
	(a) Pressure gradient is zero (b) Pressure gradient is positive													
	(c) Pressure gradient is negative (d) None of the above													
PART - B (5 x 3 = 15 Marks)														
6.	What is a fluid? He	ow are fluids class	ified?									C	01-	U

7.	Define stream line.	CO1-U		
8.	List the types of similarities between model and prototype	CO1- U		
9.	Define critical velocity	CO1- U		
10.	Illustrate the examples of formation of boundary layer in day to day life	CO2- App		
	PART – C (5 x 16= 80 Marks)			
11.	 (a) The dynamic viscosity of oil, used for lubrication between a shaft and sleeve is 6 poise. The shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost in the bearing for a sleeve length of 90mm. The thickness of the oil film is 1.5 mm Or 	CO2- App	(16)	
	(b) Calculate the capillary effect in millimeters a glass tube of 4 mm diameter, when immersed in a) water b) mercury. The temperature of the liquid is 20° C and the values of the surface tension of water and mercury at 20° C in contact with air are 0.073575 and 0.51 N/m respectively. The angle of contact for water is zero that for mercury 130°. Take specific weight of water as 998 kg/m ³	CO2- App	(16)	
12.	(a) Briefly describe about velocity potential function and stream function and its relations	CO1- U	(16)	
	 Or (b) A 30cm diameter pipe conveying water branches into two pipes of diameters 20cm and 15 cm respectively. if the average velocity in the 30cm diameter pipe is 2.5m/s.Find the discharge in the pipe, also determine the velocity in 15cm pipe .if the average velocity in 20cm diameter pipe is 2m/s 	CO2- App	(16)	
13.	(a) Find the expression for the power P, developed by a pump when P depends upon the head H, the discharge Q and specific weight w of the fluid. UseRayleigh's Method	CO2- App	(16)	
	Or (b) Discuss about Buckingham's theorem. State the procedure for solving problems.	CO2- App	(16)	
14.	(a) Differentiate major and minor losses.	CO1- U	(16)	
	(b) Calculate the discharge through a pipe of diameter 200mm when the difference of pressure head between the two ends of a pipe 500m apart is 4m of water. Take the value of f=0.009 in the formula $h_f = 4 f l v^2/2g d$	CO2- App	(16)	

15.	(a)	Explain in detail about the boundary layer separation	CO1- U	(16)
		Or		
	(b)	Determine the thickness of boundary layer at the end of the plate and the	CO2- App	(16)
		drag force on one side of a plate 1 m long and 0.8m wide when placed in		
		water flowing with a velocity of 150mm per second .Calculate the value		
		of coefficient of drag. Take kinematic viscosity =0.01 poise		