С		Reg. No. :											
	Question Paper Code: 56101												
B.E./B.Tech. DEGREE EXAMINATION, MAY 2022													
Sixth Semester													
Civil Engineering													
15UCE601- STRUCTURAL ANALYSIS – II													
(Regulation 2015)													
Dur	ation: Three hours						N	Aaxi	mur	n: 1()0 M	lark	5
Answer ALL Questions													
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	The shape factor of circular section is											CO	1- R
	(a) 1	(b) 1.7	(c) 2					((d) 2.	5		
2.	The resulting paramet method is	er in a rigid frame	anal	yzed	by	matr	ix sti	iffne	SS			CO	2- R
	(a) force	(b) moment	(c) dis	splac	eme	nt		((d) ro	otatic	on	
3.	The static indetermina	cy value for a beam	fixe	d at b	oth	ends	is					CO2	3- R
	(a) 0	(b) 1	(c) 2					((d) 3			
4.	The length of the susp	pension cable will be	e				t	o/th	an			CO4	4- R
	its horizontal span.												
	(a) more	(b) less	(c) tw	ice				((d) th	rice		
5.	The process of uniting	all the elements tog	ethe	r is k	now	n as _.						CO	5- R
	(a) discretization	(b) assemblage	(c) zo	natio	on			((d) tr	ansf	orma	tion

PART - B (5 x 3 = 15 Marks)

6.	State the lower bound theorem.	CO1- R
7.	When do you prefer matrix stiffness method of analysis?	CO2- R
8.	Define flexibility of a member.	CO3- R
9.	What is meant by discretization?	CO4- R
10.	Define tension coefficient of a truss member.	CO5- R

11. (a) Determine the shape factor and plastic moment of the CO1- App (16) symmetrical steel section (I section). Assume yield stress of steel is 250 MPa.
Total depth=600 mm
Breadth of each flange= 250 mm
Depth of each flange = 30 mm
Thickness of web= 12 mm

Or

(b) A continuous beam ABC is loaded as shown in fig. Determine the CO1- App (16) required Mp, if the load factor is 3.2.

12. (a) Analyze the continuous beam by matrix stiffness method. CO2- Ana (16)

Or

13. (a) Analyze the continuous beam by flexibility matrix method. CO3 Ana (16)

Or

(b) Analyze the portal frame by flexibility method. CO3- Ana (16) 10 t - B - C

14. (a) Explain the principle of finite element method in detail. CO4- U (16)

Or

- (b) Develop strain displacement matrix and stiffness matrix for the CO4- Ana (16) two noded bar element of (30,60) (40,80). Assume E=70 GPa & A=200 mm².
- 15. (a) A space frame shown in figure is supported at A,B,C and D in a CO5- App (16) horizontal plane, through ball joints. The member EF is horizontal, and is at a height of 3 m above the base. The loads at the joints E and F shown in figure act in a horizontal plane. Find the forces in all the member of the frame.

(b) A suspension bridge is of 160 m span. The cable of the bridge has CO5- App (16) a dip of 12 m. The cable is stiffened by a three hinged girder with hinges at either end and at centre. The dead load of the girder is 15kN/m. Find the greatest positive and negative bending moments in the girder when a single concentrated load of 340 kN passes through it. Also find the maximum tension in the cable.