Reg. No. :

Question Paper Code: 57101

B.E./B.Tech. DEGREE EXAMINATION, MAY 2022

Seventh Semester

Civil Engineering

15UCE701 -DESIGN OF REINFORCED CONCRETE AND BRICK

MASONRY STRUCTURES

(Regulation 2015)

(IS 456:2000, IS 1905 - 1987, IS 3370 : Part-II and Part-IV are permitted)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1.	Rankine's theory of lateral pressure was extended to other soil by _			CO1- R	
	(a) Resal and Bell	(b) Mohr	(c) Terzaghi	(d) All the above	
2.	Dome in water tank is provided to achieve CO2-				
	(a) Maximum strength		(b) Maximum storage		
	(c) Minimum storage		(d) Minimum hoop stress		
3.	3. The decorative cap to the top of a newel post is called:			CO3- R	
	(a) Finials	(b) Fillet	(c) Easing	(d) Apron	
4.	Ina simply supported slab, alternate bars are curtailed at			CO4- R	
	(a) $1/4^{th}$ of the span	(b) $1/5^{th}$ of the span	(c) $1/6^{\text{th}}$ of the span	$(d)1/7^{th}$ of the span	
5.	The minimum thickness of the flat slab is taken as			CO5- R	
	(a)L/32 for end panels without drops		(b) L/36 for end panels without drops		
	(c) L/36 for interior panels without drops		(d) All the above		

$PART - B (5 \times 3 = 15 \text{ Marks})$

6.	Nan	he the different types of retaining walls.	CO1- R				
7.	List	the factors for designing a water tank.	CO2-U				
8.	Wha	at are the components of flat slab?	CO3- R				
9.	State	e the principle of virtual work.	CO4- R				
10.	Wha	at is meant by lateral support?	CO5- R				
	PART – C (5 x 16= 80 Marks)						
11.	(a)	Design a reinforced concrete cantilever type retaining wall , having a 5m full stem. The wall retains the soil with its top. The soil weighs 18000 N/m ³ , and has an angle of repose 30^{0} . The SBC of soil is 200 KN/m ² . Use M20 grade concrete and Fe 415 Steel.	CO1- App	(16)			
	Or						
	(b)	Design a counter fort retaining wall for the following data. Height of the wall above the ground level = $6m$ SBC of the soil = $160KN/m^2$. Angle of friction = 33^0 . Density of the soil = $16KN/m^3$. Spacing of the counter fort = $3m c/c$ Use M20 grade concrete and Fe 415 Steel.	CO1- App	(16)			
12.	(a)	Design a underground water tank of internal dimension $6mx3mx3m$. The soil surrounding the tank always remains dry. The tank shall be provided with a roof slab. The soil weighs 16000 N/m^2 , having an angle of repose 30^0 . Use M20 grade concrete and Fe 415 Steel.	СО2- Е	(16)			

Or

(b) A reinforced concrete dome of 6m base diameter with a rise of CO2-E (16) 1.25m is to be designed for a water tank . The uniformly distributed live load including finishes on dome may be taken as 2KN/m². Adopt M20 concrete and grade one steel . Design the dome and the ring beam , permissible tensile stress in steel is 100N/mm².

13. (a) Design a interior panel of flat slab with drops for an office floor CO3-U (16) to suit the following data.
Size of floor = 20m X 20m
Size of panel = 5m X 5m
Loading class = 4 KN/m²
Grade of concrete = M 20
Grade of steel = Fe 415

Or

- (b) Explain the step by step procedure for reinforced concrete walls. CO3- U (16)
- 14. (a) Design a rectangular slab 5mx4m in size and simply supported at CO4- Ana (16) the edges to support a service live load of 4KN/m². Assume coefficient of orthotrophy as 0.7 Use M20 grade concrete and Fe 415 Steel.

Or

- (b) Design a reinforced circular slab for the following data . CO4- Ana (16) Diameter of the slab = 5.5m Service load = 4KN/m². Floor finish load = 1KN/m². The slab is simply supported along the edge. Use M20 grade concrete and Fe 415 Steel.
- 15. (a) Design a interior cross wall with axially loaded and on stiffened CO5-E (16) solid wall constructed in a two storied building to carry 100mm thick RCC slabs with 3m ceiling height. It support a 2.65 m wide slab with live load on roof = 1.5KN/m². Live load on floor = 2KN/m², weight of 80mm thick terrace = 1.96KN/m², weight of floor finish = 0.8KN/m².

Or

(b) Design an interior wall of two storied building load due to CO5-E (16) unequal short spans of roof / floor of 4m and 3m, on either side of the wall. The height of each storey is 3m, assume the intensity of loading as i) from roof = $6KN/m^2$ and ii) from floor = $4KN/m^2$.