4.

Jusstian Paper Cade: 9/106
Juestion Laper Coue, 94100

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Reg. No. :

Fourth Semester

Civil Engineering

19UCE406 - Applied Hydraulic Engineering

(Regulations 2019)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

A rectangular open channel carries a discharge of 15 m^3/s when the depth of 1. CO2- App flow is 1.5 m and the bed slope is 1: 1440. What will be the discharge through the channel at the same depth if the slope would have been 1:1000?

b) $18 \text{ m}^3/\text{s}$ c) 14.4 m^3/s a) 21.6 m^3/s d) 12.5 m^3/s

A sluice gate opening in a canal is shown in the fig. Identify the shape of 2. CO3-Ana water surface profiles at X, Y and Z will be respectively. (NDL = Normal Depth Line, CDL – Critical Depth Line, HJ = Hydraulic Jump)

5.	A hydraulic machine which converts Mechanical energy into Hydraulic energy is called as						CO1-U	
	(a) P	ump	(b) Turbine	(c) Rotor	(d)	Runner		
			PART – B	(5 x 3= 15 Marks)				
6.	Define Specific Energy with neat sketch CO						01 - U	
7.	What is a drawdown curve and backwater curve?					CO1- U		
8.	Define impulse momentum principle.					CO1- U		
9.	What are reaction turbines? Give example.					CO1- U		
10.	Define Priming of pump.					CO1- U		
			PART –	C (5 x 16= 80 Marks)				
11.	(a)	Find the discl channel has s of the bed is dimension of	harge through the mo ide slope of 1 horizo 1 in 1500. The area o the section. If $C = 5$	ost economical trapezoi ontal to 2 vertical and th f the section is 40m ² .Fin 0 r	dal e slope nd the	CO2- App	(16)	
	(b)	The discharg m, is 15 m ³ /s, when i) Sp ii) Ch iii) Value of t	e of water through a n depth of flow of w ecific energy of the f ritical Depth and Cri minimum specific er	a rectangular channel of ater is 1.2m. Calculate flowing water tical Velocity hergy	f width 8	CO2- App	(16)	
12.	(a)	Find differen applying the	tial Dynamic equati suitable assumptions	on of gradually varied	flow by	CO2- App	(16)	
	(b)	⁽¹⁾ The normal depth of flow of, in a rectangular channel 2m wide , is 1.2m. The bed slope of the channel is 0.0006 and manning's roughness coefficient n=0.015. Find the critical depth . At a certain section of the same channel the depth is 0.90 while at a second section the depth is 0.85. Find the distance b/w two sections. Also find the whether the second section is located downstream or upstream with respect to the first section.				CO2- App	(16)	
13.	(a)	The depth of section 2m w 1.8m ³ /sec. D so, determine	flow of water at a vide is 0.25m.The d etermine whether a letter its height and loss c	certain section of a rec ischarge through the cl hydraulic jump will occ of energy per Kg of wate 2	ctangular nannel is cur and if er.	CO2- App	(16)	

- (b) A spillway discharges a flood flow at a rate of 7.75 cumecs /m CO2- App (16) width. At the downstream horizontal apron the depth of flow was found to be 0.5 m. What tail water depth is needed to form a hydraulic jump? If a jump is formed, examine its type, length, head loss and energy loss as a percentage of the initial energy.
- 14. (a) A Pelton wheel is to be designed for the following specifications. CO4-App (16) Power = 735.75 kW S.P. Head = 200m, Speed = 800 r.p.m. η₀ =0.86 and jet diameter is not to exceed one-tenth the wheel diameter. Determine

 i). Wheel diameter ii). The number of jets required and iii). Diameter of the jet. Take C_v = 0.98 and speed ratio = 0.45

Or

- (b) A Kaplan turbine is to be designed to develop 9000KW. The net CO4- App (16) available head is 5.6m. The speed ratio is 2.09 and the flow is 0.68. The overall efficiency is 86% and diameter of the boss is one third the diameter of the runner. Determine the diameter of the runner, speed, and specific speed of the turbine.
- 15. (a) A Double acting reciprocating pump running at 40 rpm delivers CO4- App (16) 1 m³/sec water. The pump has a stroke length of 400mm and diameter of the plunger is 200 mm. The delivery and suction head are 20 m and 5 m respectively. Determine the theoretical discharge, slip, percentage slip, coefficient of discharge and the power required to derive the pump.

Or

(b) In an industry, it is expected to transfer high pressure liquid from CO4- App (16) chamber to another in high velocity. Suggest a suitable pump system and discuss about its principles, working with neat sketch.