1	\
μ	•

(c) Photo-heterotrophs

Reg. No.:					

Question Paper Code: 94104

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

Civil Engineering

		CI	vii Engineering		
		19UCE404 -	Waste water Engineering		
		(Re	egulations 2019)		
Dura	ation: Three hours		N	Maximum: 100 Ma	arks
		Answ	ver ALL Questions		
		PART A	$-(10 \times 1 = 10 \text{ Marks})$		
1.	The liquid waste originate collectively called	0	esidential and industrial building	ngs, C	O1- U
	(a) Domestic sewage	(b) Combine	ed (c) Sanitary	(d) none of these	e
2.	The flow velocity in	a sewer does no	t depend on:	C	CO1-U
	(a) its grade	(b) its length	(c) its hydraulic mean depth	(d) its roughness	S
3.	What are the methods	s adopted for dis	sposal of screenings?	C	CO1-U
	(a) Burning	(b) Burial	(c) Dumping	(d) all the above	;
4.	In drum type screen,	which axis does	the drum rotate?	C	CO1-U
	(a) Horizontal	(b) Vertical	(c) Irregular	(d) Horizo-verti	cal
5.	in trickl	ling filter contain	ins many species like bacteria	and C	CO1-U
	a) Treated water	b) Wastewat	ter c) Bio-film	d) Air influe	ent
6.	The waste stabilization	on ponds can be		C	CO1-U
	(a) aerobic	(b) anaerobi	ic (a) facultative	(d) all the abov	e
7.	The most important organic matter in Bio	• • •	es involved in the degradation ent Processes	of C	CO1-U
	(a) Photoautotrophs		(b) Chemo-heterotro	phs	

(d) Chemo-autotrophs

8.	In a batch system, maximum growth rate is observed in CO4-								
	(a)]	Log phase	(b) Lag phase	(c) Decay phase	(d) matura	tion ph	ase		
9.	The	pH range for p	roper functioning of slu	idge digestion tank is		C	O1- U		
	(;	a) 3.5	(b) 4-5	(c) 6.5-8.5	(d) abov	ve 10			
10.	Wha	t is the term us	ed for reuse of sewage	sludge?		C	O1- U		
	(a) (Compost	(b) Solids	(c) Bio solids	(d) Sluc	lge			
			PART - B (5	x 2= 10 Marks)					
11.	Wha	t is meant by F	opulation Equivalent?			C	O1- U		
12.	Drav	v a layout of se	eptic tank.			C	O1- U		
13.	Drav	v the layout of	activated sludge proces	SS.		C	O1- U		
14.	List	out the differen	nt stages in anaerobic pr	rocess.	CO1-				
15.	Enlist the factors affecting sludge digestion process.								
			PART – C ((5 x 16= 80 Marks)					
16.	(a)	functioning of appurtenance	f this system, suggest the swith neat sketch. Or				(16)		
	(b)	_	-	s involved in this with		- Ana	(16)		
17.	(a)	persons prov	ided with an assured v design soak well for	ank for a small colony of vater supply at a rate of effluent discharge, rate ne relevant data in desig	of 120 ate of	- App	(16)		
	(b)		nvolved in design of ning	nciple, construction deta	ails CO2	- App	(16)		
18.	(a)	-	etail about construction at sketch. Along with it Or	n and operation of oxions merits and demerits.	dation CO4	-App	(16)		

- (b) It was decided to set up a rotating biological contractor (RBC) to CO4-App (16) treat sewage in industry. Give clear details about the design requirements, construction process, merits and demerits of the process.
- 19. (a) With a neat sketch, elaborate Anaerobic digestion process CO4- App (16)
 Or
 - (b) Outline the concept of constructed wetlands. Classify its types CO4- App (16) and applicability.
- 20. (a) Domestic sewage has been discharged into river. The quality of CO2-App (16) water has been degraded. Discuss about the concept of self-purification with the various natural factors.

Or

(b) Many industries produce sludge at different levels of treatment. CO2- App (16) If managed properly sludge can be reused for varied purposes. Illustrate sludge management concept to reduce sludge wastage.