4	_	٦
4		١,
٧	L	

Reg. No.:					

Question Paper Code: 55103

B.E./B.Tech. DEGREE EXAMINATION, MAY 2022

Fifth Semester

Civil Engineering

15UCE503- DESIGN OF REINFORCED CONCRETE ELEMENTS

(IS456-2000 and SP16 Permitted)

		(Regulatio	n 2015)		
Dur	ation: Three hours	Answer ALL		Maximum: 100 Marks	
		PART A - (5 x	1 = 5 Marks)		
1.	As per limit state methods also in either direction	C CO1- R			
	(a) 0.18	(b) 0.16	(c) 0.14	(d) 0.12	
2.	A R.C.C. beam not provided with shear reinforcement may develop cracks in its bottom inclined roughly to the horizontal at				
	(a) 25°	(b) 35°	(c) 45°	(d) 55°	
3.	The minimum diameter of the longitudinal bars in an RCC column should not be less than				
	(a) 12mm	(b) 16mm	(c) 20mm	(d) 25mm	
4.	footing is used in load bearing masonry construction.				
	(a) Strip	(b) Isolated	(c) Combined	(d) Pile	
5.	The minimum width of riser and tread for a building is CO:				
	(a) 150mm&250mm	(b) 250mm&150mm	(c) 350mm & 1.8m	(d) 200mm&2m	
		PART - B (5 x	3= 15Marks)		
6.	Write the merits of lin	nit state method.		CO1- R	
7.	Define shear and torsi	CO2- R			
8.	Differentiate between	CO3- R			

9. State the reason for providing combined footing.

10. Enlist the types of staircases

CO5-R

 $PART - C (5 \times 16 = 80 \text{ Marks})$

11. (a) A rectangular beam is to be simply supported on supports of CO1- App (16) 230mm width. The clear span of the beam is 6m. The beam is to have a width of 300mm, the characteristic superimposed load is 12kN/m. Design the beam and sketch the reinforcement details.

Or

- (b) Design a slab for an office floor of size 5mX 6m carrying a load CO1- App of 6 kN/m². The slab is located at the centre (interior panel) and it is supported by a brick masonry wall of 230mm. Use M25 and Fe415. Draw the reinforcement detailing.
- 12. (a) A beam of rectangular section 300mm width and 500mm CO2- App (16) effective depth, is subjected to factored moment of 180kN-m, factored shear force of 30kN and factored twisting moment of 15kN-m. Determine the area of reinforcement to resist the above forces. Use M20 grade concrete and Fe415 grade steel

Or

- (b) A tee beam slab floor of an office comprises of a slab of 150mm CO2- App thick spanning between ribs spaced at 3m centres. The effective span of the beam is 8m. Live load on floor is 4 kN/m². Use M20 grade of concrete and Fe415 grade of Steel. Design one of the intermediate tee beams.
- 13. (a) Design the reinforcements in the slender column which is CO3- Ana (16) restrained against sway using the following data size of Column 450 X450mm, Effective length about major and minor axis =l_{ex}=l_{ey}=6m, unsupported length=7m,Factored load=1500kN, Factored moment about major and minor axes are M_{ux}=M_{uy}=40kNm at top and 20kNm at bottom. Use M30 and Fe415.

Or

(b) Design the reinforcement in a circular column of diameter CO3- Ana (16) 350mm with lateral reinforcement of 8mm diameter to support a factored load of 1400 kN. The column has an unsupported length of 3.5m and is braced against side sway. Adopt M20 grade concrete and Fe415 steel bars.

- 14. (a) Write the step by step by design procedure for combined footing. CO4- U Or
 - (b) A footing has to transfer a dead load of 1000 kN and imposed CO4-U load of 400 kN from a square column 400 x 400 mm. Safe bearing capacity is 180 kN /m². Design an appropriate footing for the column. Use M30 concrete and Fe 415 steel.
- 15. (a) Design one of the flight of a dog legged stairs spanning between CO5- App (16) landing beams using the following data.

Number of steps in flight = 10

Tread (T) = 300 mm

Rise (R) = 150 mm

Live load = $5kN/m^2$

Width of landing beam 300 mm

Take $f_{ck} = 20 \text{ N/mm}^2$ and $f_y = 415 \text{ N/mm}^2$.

Or

(b) Write the step by step by design procedure for open newel CO5-App (16) staircase.